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Introduction

We’ve seen that local methods and splines both operate
locally – either by using kernels to introduce local weights or
by using piecewise basis functions

Either way, the kernels/basis functions were prespecified – i.e.,
the basis functions are defined and weights given to
observations regardless of whether they are needed to improve
the fit or not

Another possibility is to use the data to actively seek
partitions which improve the fit as much as possible

This is the main idea behind tree-based methods, which
recursively partition the sample space into smaller and smaller
rectangles
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Recursive partitioning

To see how this works, consider a linear regression problem
with a continuous response y and two predictors x1 and x2

We begin by splitting the space into two regions on the basis
of a rule of the form xj ≤ s, and modeling the response using
the mean of y in the two regions

The optimal split (in terms of reducing the residual sum of
squares) is found over all variables j and all possible split
points s

The process is then repeated in a recursive fashion for each of
the two sub-regions
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Partitioning illustration

x1

x 2
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The regression model

This process continues until some stopping rule is applied

For example, letting {Rm} denote the collection of rectangular
partitions, we might continue partitioning until |Rm| = 10

The end result is a piecewise constant model over the
partition {Rm} of the form

f(x) =
∑
m

cmI(x ∈ Rm)

where cm is the constant term for the mth region (i.e., the
mean of yi for those observations xi ∈ Rm)
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Trees

The same model can be neatly expressed in the form of a
binary tree

The regions {Rm} are then referred to as the terminal nodes
of the tree

The non-terminal nodes are referred to as interior nodes

The splits are variously referred to as “splits”, “edges”, or
“branches”
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Equivalent tree for example partition

|x1< 7

x2>=3

x1< 2

x1< 5
R1

R2 R3

R4

R5
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Trees and interpretability

The ability to represent the model as a tree is the key to its
interpretability and popularity

With more than two explanatory variables, the earlier partition
diagram becomes difficult to draw, but the tree representation
can be extended to any dimension

Trees are one of the most easily interpreted statistical
methods: no understanding of statistics – or even
mathematics – are required to follow them, and, to some
extent, they mimic the way that human beings naturally think
about things and make decisions
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Artificial example

I know what the weather is like outside . . . should I play?

outlook

sunny overcast rainy

humidity

<= 75 > 75

yes no

yes windy

false true

yes no
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Algorithms vs. models

Tree-based methods are not “statistical” models in the
traditional sense – there is no distribution, no likelihood, no
design matrix, none of the things we usually associate with
modeling
The thinking behind them is really more algorithmic, and
treats the mechanism by which the data were generated as
unknown and unknowable
Admittedly, this is a bit foreign; however, in the words of Leo
Breiman, one of the key pioneers of tree-based methods,

The statistical community has been committed to
the almost exclusive use of data models. This
commitment has led to irrelevant theory,
questionable conclusions, and has kept statisticians
from working on a large range of interesting current
problems.
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Regression trees

We now turn to some of the details involved in fitting trees,
and begin with the case where our outcome is continuous
(such trees are referred to as regression trees)

First, note that if we adopt the least squares criterion as our
objective, then our estimate for cm is simply the average of
the yi’s in that region:

ĉm =

∑
i yiI(x ∈ Rm)∑
i I(x ∈ Rm)

Our task is then to find the optimal splitting variable j and
split point s that bring about the largest drop in the residual
sum of squares
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Regression tree algorithm

For a given splitting variable j, this amounts to finding the
value of s that minimizes∑

i:xj≤s
(yi − ĉ1)2 +

∑
i:xj>s

(yi − ĉ2)2

This may seem like a burdensome task, but if xj has been
sorted already, it can be done rather quickly (Homework)

Thus, we simply have to perform the above search for each
variable j and then pick the best (j, s) pair for our split

Having made this split, we then perform the whole process
again on each of the two resulting regions, and so on
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Categorical predictors

In the preceding, we assumed that our predictors were
continuous

The exact same approach works for ordinal predictors

For unordered categorical (i.e. nominal) predictors with q
categories, there are 2q−1 − 1 possible splits

This actually makes things easier when q is small, but causes
two problems when q is large:

The number of calculations grows prohibitive
The algorithm favors variables with a large number of possible
splits, as the more choices we have, the better chance we can
find one that seems to fit the data well
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What size tree?

How large should our tree be?

A small tree might be too simple, while a large tree might
overfit the data

There are two main schools of thought on this matter:

The decision of whether to split or not should be based on a
hypothesis test of whether the split significantly improves the
fit or not
Tree size is a tuning parameter, and we can choose it using
methods such as cross-validation
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Hypothesis-testing approach

The hypothesis-testing approach is straightforward:

Carry out an appropriate hypothesis test for each variable

If the lowest p-value is significant after adjusting for the
number of comparisons, partition the data using the optimal
split for the variable with the lowest p-value

When no significant variables can be found, stop growing the
tree
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Pruning

The upside of this approach, of course, is that you get p-values
for each split, and they are guaranteed to be significant

Furthermore, it alleviates the problem alluded to earlier,
whereby explanatory variables with a large number of possible
splits are more likely to be selected

One downside, however, is that a seemingly unimportant split
might lead to a very important split later on

An alternative is to “grow” a large tree, and then use a
model-selection criterion to “prune” the tree back to its
optimal size
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Rules for growing trees

Some common rules for when to stop growing a tree are:

When the number of terminal nodes exceeds some cutoff
When the number of observations in the terminal nodes
reaches some cutoff
When the depth of the tree reaches a certain level

Denote this tree, the largest tree under consideration, as T0
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Node impurity

Now consider a subtree T that can be obtained by pruning T0
– that is, by collapsing any number of its internal nodes

Let |T | denote the number of terminal nodes in tree T , and
index those nodes with m, with node m representing region
Rm

We now define the node impurity measure:

Qm(T ) =
1

Nm

∑
i:xi∈Rm

(yi − ĉm)2,

where Nm is the number of observations in node m
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Cost-complexity pruning

Finally, we define the cost-complexity criterion:

Cα(T ) =
∑
m

NmQm(T ) + α |T |

The tuning parameter α behaves like the other regularization
parameters we have seen, balancing stability (tree size) with
goodness of fit

For any given α, there is a tree Tα which minimizes the above
criterion

As the notation suggests, with α = 0 we get T0, the full tree

α itself is usually chosen via cross-validation
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To get a sense of how trees and their implementations in R

work, we now turn to an example involving second hand
smoke exposure in children

Cotinine is a metabolite of nicotine, and is found in elevated
levels in people exposed to second-hand smoke

Measurement of cotinine requires lab tests, which cost time
and money

It is easier, of course, to simply ask parents about the extent
of second hand smoke that their children are exposed to – but
how accurate are their answers?
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To assess the correspondence (or lack thereof) between
self-reported exposure and cotinine levels, the following variables
were recorded:

SmokerTime: Time spent with smokers
(Daily/Intermittent/None)

TSHours: Hours/day spent with a smoker

Nsmokers: Number of smokers who live in the household

PPD: Packs per day smoked by the household

PctOut: Percentage of time spent smoking that is done
outdoors

SHS: Self-reported second-hand smoke exposure
(None/Mild/Moderate/Heavy)
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In R, there are two primary packages one can use to fit
tree-based models:

rpart, which is based on cost-complexity pruning
party, which is based on hypothesis test-based stopping

The party package has considerably better tools for plotting
and displaying trees, but thankfully, we can use these plotting
tools to plot trees fit using rpart as well
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In rpart, the model-fitting function is rpart:

fit0 <- rpart(Cotinine~., data=shs)

In party, the model-fitting function is ctree:

fit <- ctree(Cotinine~., data=shs)
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In party, the algorithm stops automatically when further
splits no longer significantly improve the fit

In rpart, one still has to prune the tree after it has been
grown

Thankfully, rpart carries out cross-validation for you and
stores the results in fit$cptable

α is referred to as cp, and the cross-validation error is xerror
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alpha <- fit0$cptable[which.min(fit0$cptable[,"xerror"]),"CP"]

fit <- prune(fit0,alpha)
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Plotting trees

rpart comes with its own plotting method:

plot(fit)

text(fit)

However, the end result is not particularly beautiful

The plotting functions in party are much nicer; thankfully,
you can use party’s tools to plot rpart objects using the
package partykit:

require(partykit)

plot(as.party(fit))
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Plotting trees (cont’d)
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Classification trees

Tree-based methods can be extended to categorical outcomes
as well; these are referred to as classification trees

The main idea is the same: we recursively partition the
sample space, fitting a very simple model in each partition

In the case of classification, our model is to simply use the
observed proportions, estimating Pr(G = k|x) by∑

m

π̂mkI(x ∈ Rm),
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Node impurity

Besides the model being fit at each node, the only other
difference is the criterion used for splitting and pruning

There are three commonly used measures of node impurity
Qm(T ) for classification trees:

Misclassification error:
1

Nm

∑
i∈Rm

I(yi 6= arg maxkπ̂mk)

Gini index:
∑
k

π̂mk(1− π̂mk)

Deviance: −
∑
k

π̂mk log(π̂mk)

All three are similar, but the Gini index and deviance are
differentiable, and thus easier to optimize numerically
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Assumption-free

Perhaps the primary advantage of tree-based methods is that
they are virtually assumption-free

Consequently, they are very simple to fit and interpret, since
no time or effort has to go into making, checking, or
explaining assumptions

Furthermore, they are capable of discovering associations,
such as higher-order interactions, that would otherwise go
utterly unsuspected
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Missing data

In addition, trees have a rather elegant option for handling
missing data besides the usual options of discarding or
imputing observations

For a given split, we can find surrogate splits, which best
mimic the behavior of the original split

Then, when sending an observation down the tree, if the
splitting variable is missing, we simply use the surrogate split
instead
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Instability of trees

The primary disadvantage of trees is that they are rather
unstable (i.e., have high variance)

In other words, small change in the data often results in a
completely different tree – something to keep in mind while
interpreting trees

One major reason for this instability is that if a split changes,
all the splits under it are changes as well, thereby propagating
the variability

A related methodology, random forests, uses the bootstrap to
grow a large number of trees and then averages across them
in order to stabilize the tree-based approach, although
obviously there is a cost as far as interpretation is concerned
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Difficulty in capturing additive structure

In addition, trees have a difficult time capturing simple additive
structures:
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Recursive partitioning
Bias-variance tradeoff

Example
Further remarks

Classification trees
Pros and cons of tree-based methods

Concluding remarks

In some sense, the weaknesses of tree-based methods are
precisely the strengths of linear models, and vice versa

For this reason, I personally have often found the two
methods to be useful complements to each other

For example, when embarking on an extensive analysis using a
linear or generalized linear model, it doesn’t hurt to check
your results against a regression tree

If you find that the regression tree chooses a very different set
of important variables and achieves a much better R2, you
may want to reconsider the additive model
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