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Introduction

We are discussing ways to estimate the regression function f ,
where

E(y|x) = f(x)

One approach is of course to assume that f has a certain
shape, such as linear or quadratic, that can be estimated
parametrically

We have also discussed locally weighted linear/polynomial
models as a way of allowing f to be more flexible

An alternative approach is to introduce local basis functions
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Basis functions

A common approach for extending the linear model is to
augment the linear component of x with additional, known
functions of x:

f(x) =

M∑
m=1

βmhm(x),

where the {hm} are known functions called basis functions

Because the basis functions {hm} are prespecified and the
model is linear in these new variables, ordinary least squares
approaches for model fitting and inference can be employed

This idea is not new to you, as you have encountered
transformations and the inclusion of polynomial terms in
models in earlier courses
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Problems with polynomial regression

However, polynomial terms introduce undesirable side effects:
each observation affects the entire curve, even for x values far
from the observation

Not only does this introduce bias, but it also results in
extremely high variance near the edges of the range of x

As Hastie et al. (2009) put it, “tweaking the coefficients to
achieve a functional form in one region can cause the function
to flap about madly in remote regions”
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Problems with polynomial regression (cont’d)

To illustrate this, consider the following simulated example (gray
lines are models fit to 100 observations arising from the true f ,
colored red):
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Global versus local bases

We can do better than this

Let us consider instead local basis functions, thereby ensuring
that a given observation affects only the nearby fit, not the fit
of the entire line

In this lecture, we will discuss splines: piecewise polynomials
joined together to make a single smooth curve
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The piecewise constant model

To understand splines, we will gradually build up a piecewise
model, starting at the simplest one: the piecewise constant
model

First, we partition the range of x into K + 1 intervals by
choosing K points {ξk}Kk=1 called knots

For our example involving bone mineral density, we will
choose the tertiles of the observed ages
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The piecewise constant model (cont’d)
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The piecewise linear model
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The continuous piecewise linear model
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Basis functions for piecewise continuous models

These constraints can be incorporated directly into the basis
functions:

h1(x) = 1, h2(x) = x, h3(x) = (x− ξ1)+, h4(x) = (x− ξ2)+,

where (·)+ denotes the positive portion of its argument:

r+ =

{
r if r ≥ 0

0 if r < 0
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Basis functions for piecewise continuous models

It can be easily checked that these basis functions lead to a
composite function f(x) that:

Is linear everywhere except the knots
Has a different intercept and slope in each region
Is everywhere continuous

Also, note that the degrees of freedom add up: 3 regions × 2
degrees of freedom in each region - 2 constraints = 4 basis
functions
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Splines

The preceding is an example of a spline: a piecewise m− 1
degree polynomial that is continuous up to its first m− 2
derivatives

By requiring continuous derivatives, we ensure that the
resulting function is as smooth as possible

We can obtain more flexible curves by increasing the degree of
the spline and/or by adding knots

However, there is a tradeoff:

Few knots/low degree: Resulting class of functions may be too
restrictive (bias)
Many knots/high degree: We run the risk of overfitting
(variance)
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The truncated power basis

The set of basis functions introduced earlier is an example of
what is called the truncated power basis

Its logic is easily extended to splines of order m:

hj(x) = xj−1 j = 1, . . . ,m

hm+k(x) = (x− ξk)m−1
+ k = 1, . . . ,K

Note that a spline has m+K degrees of freedom

Homework: Write the set of truncated spline basis functions
for representing a cubic spline function with three knots.
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Quadratic splines
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Cubic splines
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Additional notes

These types of fixed-knot models are referred to as regression
splines

Recall that cubic splines contain 4 +K degrees of freedom:
K + 1 regions × 4 parameters per region - K knots × 3
constraints per knot

It is claimed that cubic splines are the lowest order spline for
which the discontinuity at the knots cannot be noticed by the
human eye

There is rarely any need to go beyond cubic splines, which are
by far the most common type of splines in practice
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Implementing regression splines

The truncated power basis has two principal virtues:

Conceptual simplicity
The linear model is nested inside it, leading to simple tests of
the null hypothesis of linearity

Unfortunately, it has several computational/numerical flaws –
it’s inefficient and can lead to overflow and nearly singular
matrix problems

The more complicated but numerically much more stable and
efficient B-spline basis is often employed instead
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B-splines in R

Fortunately, one can use B-splines without knowing the details
behind their complicated construction

In the splines package (which by default is installed but not
loaded), the bs() function will implement a B-spline basis for
you

X <- bs(x,knots=quantile(x,p=c(1/3,2/3)))

X <- bs(x,df=5)

X <- bs(x,degree=2,df=10)

Xp <- predict(X,newdata=x)

By default, bs uses degree=3, knots at evenly spaced
quantiles, and does not return a column for the intercept
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Natural cubic splines

Polynomial fits tend to be erratic at the boundaries of the
data; naturally, cubic splines share the same flaw

Natural cubic splines ameliorate this problem by adding the
additional (4) constraints that the function is linear beyond
the boundaries of the data
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Natural cubic splines (cont’d)
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Natural cubic splines, 6 df
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Natural cubic splines, 6 df (cont’d)
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Splines vs. Loess (6 df each)
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Natural splines in R

R also provides a function to compute a basis for the natural
cubic splines, ns, which works almost exactly like bs, except
that there is no option to change the degree

Note that a natural spline has m+K − 4 degrees of freedom;
thus, a natural cubic spline with K knots has K degrees of
freedom
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Mean and variance estimation

Because the basis functions are fixed, all standard approaches
to inference for regression are valid

Furthermore, note that the resulting estimate is a linear
smoother with L = X(X′X)−1X′; thus

E(f̂) = Lf where f = E(y|x)

V(f̂) = σ2LL′

CV =
1

n

∑
i

(
yi − ŷi
1− lii

)2

Furthermore, extensions to logistic regression, Cox
proportional hazards regression, etc., are straightforward
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Mean and variance estimation (cont’d)
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Mean and variance estimation (cont’d)

Coronary heart disease study, K = 4
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Problems with knots

Fixed-df splines are useful tools, but are not truly
nonparametric

Choices regarding the number of knots and where they are
located are fundamentally parametric choices and have a large
effect on the fit

Furthermore, assuming that you place knots at quantiles,
models will not be nested inside each other, which
complicates hypothesis testing

An alternative, more direct approach is penalization
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Controlling smoothness with penalization

Here, we directly solve for the function f that minimizes the
following objective function, a penalized version of the least
squares objective:

n∑
i=1

{yi − f(xi)}2 + λ

∫
{f ′′(u)}2du

The first term captures the fit to the data, while the second
penalizes curvature – note that for a line, f ′′(u) = 0 for all u

Here, λ is the smoothing parameter, and it controls the
tradeoff between the two terms:

λ = 0 imposes no restrictions and f will therefore interpolate
the data
λ =∞ renders curvature impossible, thereby returning us to
ordinary linear regression
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Controlling smoothness with penalization (cont’d)

This avoids the knot selection problem altogether by
formulating the problem in a nonparametric manner

It may sound impossible to solve for such an f over all
possible functions, but the solution turns out to be
surprisingly simple: as we will show, the solution to this
problem lies in the family of natural cubic splines
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Terminology

First, some terminology:

The parametric splines with fixed degrees of freedom that we
have talked about so far are called regression splines

A spline that passes through the points {xi, yi} is called an
interpolating spline, and is said to interpolate the points
{xi, yi}
A spline that describes and smooths noisy data by passing
close to {xi, yi} without the requirement of passing through
them is called a smoothing spline
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Natural cubic splines are the smoothest interpolators

Theorem: Out of all twice-differentiable functions passing through
the points {xi, yi}, the one that minimizes

λ

∫
{f ′′(u)}2du

is a natural cubic spline with knots at every unique value of {xi}
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Natural cubic splines solve the nonparametric formulation

Theorem: Out of all twice-differentiable functions, the one that
minimizes

n∑
i=1

{yi − f(xi)}2 + λ

∫
{f ′′(u)}2du

is a natural cubic spline with knots at every unique value of {xi}
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Design matrix

Let {Nj}nj=1 denote the collection of natural cubic spline basis
functions and N denote the n× n design matrix consisting of the
basis functions evaluated at the observed values:

Nij = Nj(xi)

f(x) =
∑n

j=1Nj(x)βj

f(x) = Nβ
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Solution

Homework: Show that the objective function for penalized
splines is

(y −Nβ)′(y −Nβ) + λβ′Ωβ,

where Ωjk =
∫
N ′′j (t)N ′′k (t)dt

The solution is therefore

β̂ = (N′N + λΩ)−1N′y
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Smoothing splines are linear smoothers

Note that the fitted values can be represented as

ŷ = N(N′N + λΩ)−1N′y

= Lλy

Thus, smoothing splines are linear smoothers, and we can use
all the results that we derived back when discussing local
regression
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Smoothing splines are linear smoothers (cont’d)

In particular:

CV =
1

n

∑
i

(
yi − ŷi
1− lii

)2

Ef̂(x0) =
∑
i

li(x0)f(x0)

Vf̂(x0) = σ2 ‖l(x0)‖2

σ̂2 =

∑
i(yi − ŷi)2

n− ν̃
ν = tr(L)

ν̃ = 2tr(L)− tr(L′L)
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CV, GCV for BMD example
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Undersmoothing and oversmoothing of BMD data
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R implementation

Recall that local regression had a simple, standard function for
basic one-dimensional smoothing (loess) and an extensive
package for more comprehensive analyses (locfit)

Spline-based smoothing is similar

smooth.spline does not require any packages and
implements simple one-dimensional smoothing:

fit <- smooth.spline(x,y)

plot(fit,type="l")

predict(fit,xx)

By default, the function will choose λ based on GCV, but this
can be changed to CV, or you can specify λ
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The mgcv package

If you have a binary outcome variable or multiple covariates or
want confidence intervals, however, smooth.spline is lacking

A very extensive package called mgcv provides those features,
as well as much more

The basic function is called gam, which stands for generalized
additive model (we’ll discuss GAMs more in a later lecture)

Note that the main function of the gam package was also
called gam; it is best to avoid having both packages loaded at
the same time
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The mgcv package (cont’d)

The syntax of gam is very similar to glm and locfit, with a
function s() placed around any terms that you want a smooth
function of:

fit <- gam(y~s(x))

fit <- gam(y~s(x),family="binomial")

plot(fit)

plot(fit,shade=TRUE)

predict(fit,newdata=data.frame(x=xx),se.fit=TRUE)

summary(fit)
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Hypothesis testing

As with local regression, we are often interested in testing
whether the smaller of two nested models provides an
adequate fit to the data

As before, we may construct F tests and generalized
likelihood ratio tests:

F =
(RSS0 − RSS1)/q

σ̂2
.∼ Fq,n−ν1

Λ = 2
{
l(β̂|y)− l(β̂0|y)

}
.∼ χ2

q

where q is the difference in degrees of freedom between the
two models
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Hypothesis testing (cont’d)

As with local regression, these tests do not strictly preserve
type I error rates, but still provide a way to compute useful
approximate p-values in practice

Like the gam package, mgcv provides an anova method:

anova(fit0,fit,test="F")

anova(fit0,fit,test="Chisq")

It should be noted, however, that such tests treat λ as fixed,
even though in reality it is often estimated from the data
using CV or GCV
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