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Moving beyond least squares

Thus far, we have fit local least squares models

More generally, we may allow the outcome Yi to follow a
distribution f(y|θi), e.g.,

Exponential: f(y|θ) = θ−1 exp(y/θ), y ≥ 0
Binomial: f(1|θ) = θ, f(0|θ) = 1− θ

For regression problems, θi depends on some covariate xi

A parametric model would involve the specification
θi = α+ βxi; today we will let θi = θ(xi) represent an
unknown smooth function we wish to estimate
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Local likelihood

One way to achieve that flexibility is by fitting separate, local
models at each target point x0 and smoothing those models
together using kernel weighting

Specifically, at x0, we estimate α̂ and β̂ by maximizing∑
i

Kh(x0, xi)l(α+ βxi|yi)

where l(θ|y) = log{f(y|θ)}
In principle, any distribution and likelihood could be extended
to this approach, but in practice it is usually applied to
generalized linear models
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Fitting local GLMs

Letting the ith row of the design matrix be (1, xi − x0) as in
local linear regression, the local likelihood estimate β̂ at x0
can be found by solving

X′Wu = 0,

where W is the diagonal matrix of kernel weights and
u = ∂

∂θ l(yi, θ̂i) is the score vector

Unlike local linear regression, this equation typically does not
have a closed form solution and must be solved by iterative
methods
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Linearization of the score

As with regular GLMs, we may proceed by constructing a
linear approximation to the score via Taylor series expansion
around the current estimate, θ̃:

u ≈ V(z− θ),

where V is a diagonal matrix with entries − ∂2

∂θ2
l(θ̂i|yi) (i.e.,

the observed information) and z = θ̃ + V−1(y − µ̃) is the
“pseudoresponse”

The solution to our local maximum likelihood solution is
therefore

β̃ = (X′WVX)−1XWVz

It is important to keep in mind, however, that both z and V
depend on θ̃, and thus we need to update them via θ̃ ← Xβ̃
and iterate until convergence
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Deviance and degrees of freedom

The analogous concept to the residual sum of squares for
generalized linear models is the deviance:

D(y|θ̂) = 2
{
l(θmax|y)− l(θ̂|y)

}
,

where θmax is the vector of parameters that maximize
l(θmax|y) over all θ (the “saturated” model)

Continuing with the analogy to local linear regression, we may
define our two effective degree of freedom terms:

ν = tr(R)

ν̃ = 2tr(R)− tr(R′VRV−1),

where R = X(X′WVX)−1X′WV
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Caveats

Unlike the residual sum of squares, the deviance is not χ2

distributed, not even asymptotically

Nevertheless, inference based on deviance and approximate
degrees of freedom is useful in practice, aids with
interpretation, and usually provides adequate empirical
accuracy in terms of preserving coverage and type I error rates
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Selection of h

As always, there is the issue of how to choose the bandwidth h

One approach is to carry out leave-one-out cross-validation
with deviance replacing squared error loss:

CV =
∑
i

D
(
yi|θ̂−i(xi)

)
However, unlike local linear regression, non-gaussian GLMs are
not linear smoothers and there is no convenient way to
calculate θ̂−i(xi) without refitting the model

For this reason, it is customary to use a criterion such as AIC
instead:

AIC =
∑
i

D(yi|θ̂i) + 2ν
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Confidence intervals

One can obtain confidence intervals for θ(x0) via quadratic
approximations, as is often done with GLMs themselves:

θ̂(x0) = Rz

Thus,

V{θ̂(x0)} = RV(z)R′

= RV−1R′
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Generalized likelihood ratio tests

Finally, we can carry out hypothesis testing between two
nested models via approximate generalized likelihood ratio
tests:

Λ = 2
{
l(θ̂1|y)− l(θ̂0|y)

}
or equivalently,

Λ = 2
{
D(y|θ̂0)−D(y|θ̂1)

}
Under the null hypothesis that model 0 is correct, Λ follows a
distribution very similar to a χ2 distribution with ν̃1 − ν̃0
degrees of freedom
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Syntax

The syntax for fitting generalized linear models in R is
straightforward; both locfit and gam provide a family

argument that works exactly the same as it does in glm

Thus, for locfit:

locfit(chd~lp(sbp), data=heart, family="binomial")

and for gam:

gam(chd~lo(sbp), data=heart, family="binomial")

Patrick Breheny STA 621: Nonparametric Statistics 11/20



Local likelihood
Fitting local GLMs in R

Local logistic regression

By default, both gam and locfit incorporate a link function;
rather than model E(Y ) directly, they model

g {E(Y |x)} = θ(x),

where g is a known function
For logistic regression, g is usually chosen to be the logit
function:

g(π) = log

{
π

1− π

}
,

where π = P(Y = 1), thus implying

π =
eθ

1 + eθ

This is the canonical link for a binomial likelihood; in general,
canonical links have many attractive statistical properties,
such as ensuring that E(Y ) stays within the support of Y
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Comparison of local likelihood with other methods
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Using AIC to choose bandwidth
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SBP: Pointwise bands
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SBP: Simultaneous bands
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Age: Pointwise bands
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Age: Simultaneous bands
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ANOVA table: SBP

Resid. df Deviance ν̃ ∆Dev p

Null 461 596.1
Linear 460 579.3 1 16.79 < 0.0001
Local 457.4 577.7 2.6 1.60 0.58
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ANOVA table: Age

Resid. df Deviance ν̃ ∆Dev p

Null 461 596.1
Linear 460 525.6 1 70.55 < 0.0001
Local 457.5 519.9 2.5 5.65 0.09
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