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Introduction

For the remainder of the course, we will focus on
nonparametric regression and classification

The regression problem involves modeling how the expected
value of a response y changes in response to changes in an
explanatory variable x:

E(y|x) = f(x)

Linear regression, as its name implies, assumes a linear
relationship; namely, that f(x) = β0 + β1x
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Parametric vs. nonparametric approaches

This reduction of a complicated function to a simple form
with a small number of unknown parameters is very similar to
the parametric approach to estimation and inference involving
the unknown distribution function

The nonparametric approach, in contrast, is to make as few
assumptions about the regression function f as possible

Instead, we will try to use the data as much as possible to
learn about the potential shape of f – allowing f to be very
flexible, yet smooth
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Simple local models

One way to achieve this flexibility is by fitting a different,
simple model separately at every point x0 in much the same
way that we used kernels to estimate density

As with kernel density estimates, this is done using only those
observations close to x0 to fit the simple model

As we will see, it is possible to extend many of the same
kernel ideas we have already discussed to smoothly “blend”
these local models to construct a smooth estimate f̂ of the
relationship between x and y
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Introduction

Before we do so, however, let us get a general feel for the
contrast between parametric and nonparametric classification
by contrasting two simple, but very different, methods: the
ordinary least squares regression model and the k-nearest
neighbor prediction rule

The linear model makes huge assumptions about the structure
of the problem, but is quite stable

Nearest neighbors is virtually assumption-free, but its results
can be quite unstable

Each method can be quite powerful in different settings and
for different reasons
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Simulation settings

To examine which method is better in which setting, we will
simulate data from a simple model in which y can take on one
of two values: −1 or 1

The corresponding x values are derived from one of two
settings:

Setting 1: x values are drawn from a bivariate normal
distribution with different means for y = 1 and y = −1
Setting 2: A mixture in which 10 sets of means for each class
(1,−1) are drawn; x values are then drawn by randomly
selecting a mean from the appropriate class and then
generating a random bivariate normal observation with that
mean

A fair competition between the two methods is then how well
they do at predicting whether a future observation is 1 or −1
given its x values
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Linear model results
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Linear model remarks

The linear model seems to classify points reasonably in setting
1

In setting 2, on the other hand, there are some regions which
seem questionable

For example, in the lower left hand corner of the plot, does it
really make sense to predict “blue” given that all of the
nearby points are “red”?
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Nearest neighbors

Consider then a completely different approach in which we
don’t assume a model, a distribution, a likelihood, or anything
about the problem: we just look at nearby points and base
our prediction on the average of those points

This approach is called the nearest-neighbor method, and is
defined formally as

ŷ(x) =
1

k

∑
xi∈Nk(x)

yi,

where Nk(x) is the neighborhood of x defined by its k closest
points in the sample
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Nearest neighbor results
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Nearest neighbor remarks

Nearest neighbor seems not to perform terribly well in setting
1, as its classification boundaries are unnecessarily complex
and unstable

On the other hand, the method seemed perhaps better than
the linear model in setting 2, where a complex and curved
boundary seems to fit the data better

Furthermore, the choice of k plays a big role in the fit, and
the optimal k might not be the same in settings 1 and 2
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Inference

Of course, it is potentially misleading to judge whether a
method is better simply because it fits the sample better

What matters, of course, is how well its predictions generalize
to new samples

Thus, consider generating 100 data sets of size 200, fitting
each model, and then measuring how well each method does
at predicting 10,000 new, independent observations
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Simulation results

Black line = least squares; blue line = nearest neighbors
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Remarks

In setting 1, linear regression was always better than nearest
neighbors

In setting 2, nearest neighbors was usually better than linear
regression

However, it wasn’t always better than linear regression – when
k was too big or too small, the nearest neighbors method
performed poorly

In setting 1, the bigger k was, the better; in setting 2, there
was a “Goldilocks” value of k (about 25) that proved optimal
in balancing the bias-variance tradeoff
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Conclusions

Thus,

Fitting an ordinary linear model is rarely the best we can do

On the other hand, nearest-neighbors is rarely stable enough
to be ideal, even in modest dimensions, unless our sample size
is very large (recall the curse of dimensionality)
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Conclusions (cont’d)

These two methods stand on opposite sides of the
methodology spectrum with regard to assumptions and
structure

The methods we will discuss for the remainder of the course
involve bridging the gap between these two methods – making
linear regression more flexible, adding structure and stability
to nearest neighbor ideas, or combining concepts from both

As with kernel density estimation, the main theme that
emerges is the need to apply methods that bring the right mix
of flexibility and stability that is appropriate for the data
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