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Introduction

For the rest of the course, we will be interested in estimating
curves

We will be interested in two main types of curves:

Density estimation: f(x)
Regression: f(x) = E(y|x)

Because we anticipate that the real nature of these functions
is some sort of smooth curve, it is desirable that our estimates
be smooth as well – this is why another name for curve
estimation is smoothing

In this lecture, we will discuss histograms, the simplest
method of density estimation, and introduce many of the
main ideas that will come up consistently throughout the rest
of the course

Patrick Breheny STA 621: Nonparametric Statistics 2/30



Histograms
The bias-variance tradeoff

Choice of binwidth
Confidence bands

Histograms

Let [a, b] denote an interval which contains the data {xi}, and
let m be an integer which divides [a, b] into m equal-width
bins, {Bj}mj=1

Let

h =
b− a
m

denote the binwidth and let yj denote the number of
observations in Bj

Finally, let p̂j = yj/n, pj =
∫
Bj
f(u)du, and

f̂(x) =
p̂j
h

for all x ∈ Bj , where f(·) is the true density of X
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Expectation and variance of f̂

Theorem: For a fixed x and m,

Ef̂(x) =
pj
h

Vf̂(x) =
pj(1− pj)

nh2
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Bias

The histogram is therefore an unbiased estimator of the
average density over Bj

But that isn’t the same thing as an unbiased estimator of f
(unless f happened to be constant over Bj)

If f changes over Bj , f̂ will be biased
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Bias (cont’d)

The bias can be alleviated by choosing a smaller binwidth:
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Variance

However, recall that

Vf̂(x) =
pj(1− pj)

nh2

If we make the binwidth twice as small, we quadruple the
variance of our estimator

Therefore, we forced into a difficult tradeoff: if we try to
reduce bias, we increase variance, and vice versa
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The bias-variance tradeoff

This bias-variance tradeoff is fundamental and occurs
whenever we try to estimate curves: it will come up in every
method we discuss from now until the end of the semester

In most of these methods, there will be a parameter that
controls this tradeoff

This parameter is called the smoothing parameter, because it
controls how smooth the curve is

If the curve is too smooth, it risks bias; if it is very rough, it
risks variance

In the histogram example, the smoothing parameter is the
binwidth
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Loss functions

In order to start thinking about an optimal way to balance
bias and variance, we need to introduce a criterion that
measures the overall quality of a curve

This criterion is called a loss function; the most common loss
function is the squared-error loss function:

L(f, f̂) =

∫
{f̂(x)− f(x)}2dx
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Expected loss

This leads us to a criterion for choosing the smoothing
parameter to optimally balance variance and bias: the
expected value of the loss function

This criterion is known as the expected loss or risk

Note that the random variable in this expectation is the
estimate f̂ , which depends implicitly on the data

Patrick Breheny STA 621: Nonparametric Statistics 10/30



Histograms
The bias-variance tradeoff

Choice of binwidth
Confidence bands

Expected squared-error loss

For squared error loss, the bias-variance decomposition is
explicit

Theorem: For squared-error loss,

EL(f, f̂) =

∫
b(x)2dx+

∫
v(x)dx,

where b(x) = Ef̂(x)− f(x) is the bias of f̂(x) and
v(x) = Vf̂(x) is the variance of f̂(x)

In words, expected loss is equal to (integrated) bias squared
plus variance

Homework: Prove the above theorem
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Bias-variance decomposition for histograms

Theorem: Suppose f is twice differentiable with bounded support,∫
f ′(u)2du <∞, and L is the squared error loss function. Then

EL(f, f̂) =
h2

12

∫
f ′(u)2du+

1

nh
+ o(h2) +O

(
1

n

)
.

Furthermore, the value h∗ that minimizes the expected loss is

h∗ =
1

n1/3

(
6∫

f ′(u)2du

)1/3

With this choice of binwidth,

EL(f, f̂) = O(n−2/3)
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Comments

Three important things to note from this theorem:

Note that the bias is proportional to h2 (low binwidth is good
for bias), while variance is proportional to h−1 (low binwidth
is bad for variance)

Bias depends on the non-constancy of f – the more f
changes, the greater the impact of bias on expected loss

The optimal expected loss converges to 0 at the rate n−2/3; in
our next lecture, we will introduce a type of density estimator
with a superior convergence rate
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Consistency of the histogram

It is also worth noting that the histogram is pointwise consistent:

Theorem: Suppose that f is continuous at x, that h→ 0, and

that nh→∞ as n→∞. Then f̂(x)
P−→ f(x).
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Introduction

In practice, this theorem is not a useful way of choosing an
optimal binwidth, as it depends on knowing f

Instead, the optimal values of smoothing parameters must
usually be estimated based on the observed data

Writing the loss as a function of the smoothing parameter h,
note that

L(h) =

∫
f̂2(x)dx− 2

∫
f̂(x)f(x)dx+ c,

where c is a constant with respect to h

Patrick Breheny STA 621: Nonparametric Statistics 15/30



Histograms
The bias-variance tradeoff

Choice of binwidth
Confidence bands

Estimating EL(h)

We are interested in estimating EL(h)

An obvious step is to estimate Ef̂ with f̂

Thus, we can estimate EL(h) if we can estimate∫
f̂(x)f(x)dx

This is not trivial, however, since we don’t know f
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A proposal for Ĵ

One idea would be to use the plug-in principle: letting
J(h) = EL(h)− c,

Ĵ(h) =

∫
f̂2(x)dx− 2

∑
i

1

n
f̂(xi)

However, this turns out to be a poor estimator
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A proposal for Ĵ (cont’d)
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Overfitting

The proposed Ĵ is biased downwards and will always indicate
that the expected loss is minimized at h ≈ 0

The reason for the failure of this estimate is that we are using
the data twice: once to fit f̂ , and then again to estimate the
expected loss

This will reward overfitting
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Cross-validation

A solution is to split the data set into two fractions, then use
one portion to fit f̂ and the other to evaluate how well f̂
seemed to estimate the density of the observations in the
second portion

The problem with this solution is that we rarely have so much
data that we can freely part with half of it solely for the
purpose of choosing a smoothing parameter

To finesse this problem, cross-validation splits the data into K
folds, fits the data on K − 1 of the folds, and evaluates risk
on the fold that was left out
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Cross-validation figure

This process is repeated for each of the folds, and the risk
averaged across all of these results:

1 2 3 4 5
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How many folds?

Common choices for K are 5, 10, and n

n-fold cross-validation is also known as leave-one-out
cross-validation

n-fold cross-validation has the attractive property that it
doesn’t depend on how the data was randomly split into K
folds, although it carries a downside of increased
computational burden, as f̂ must be fit n separate times
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Leave-one-out cross-validation for histograms

The leave-one-out cross-validation estimate of expected loss
for the histogram problem is

Ĵ(h) =

∫
f̂2(x)dx− 2

∑
i

1

n
f̂(−i)(xi),

where f̂(−i) denotes the density estimate obtained after
removing the ith observation

Because the histogram is such a simple estimator, this
expression can actually be worked out in closed form:

Ĵ(h) =
2

h(n− 1)
− n+ 1

h(n− 1)

m∑
j=1

p̂2j
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Estimated risk: cross-validation
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Histogram with optimal number of bins
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Introduction

Finally, let’s discuss the issue of confidence bands for f

In general, it is not actually possible to construct confidence
bands for f itself – we must settle for confidence bands for f̄ ,
the piecewise constant function of average density over the
histogram bins

Recall also the distinction between pointwise confidence
intervals (which have 1-α coverage only at a given x) versus
confidence bands (which have 1-α coverage for containing the
entire f̄ over all x)
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Pointwise binomial intervals

One can construct pointwise confidence intervals based on the
binomial distribution:
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Bonferroni bands

To obtain confidence bands, one could use a Bonferroni approach,
with α∗ = α/m:

Waiting times (min)

D
en

si
ty

50 60 70 80 90

0.
00

0.
02

0.
04

0.
06

Patrick Breheny STA 621: Nonparametric Statistics 28/30



Histograms
The bias-variance tradeoff

Choice of binwidth
Confidence bands

Bootstrap bands

Another approach is to use the bootstrap

The two approaches yield similar answers here, but the
bootstrap approach will be useful later on when we discuss
more complicated methods than the histogram
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Bootstrap bands (cont’d)

Bonferroni/Binomial
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