
Introduction
Splines

Splines

Patrick Breheny

September 27

Patrick Breheny BST 764: Applied Statistical Modeling 1/31



Introduction
Splines

Parametric vs. nonparametric regression
Polynomial regression

Introduction

Our next topic is nonparametric regression

The regression problem involves modeling how the expected
value (or some function of the expected value) of a response y
changes in response to changes in an explanatory variable x:

E(y|x) = f(x)

Linear regression, as its name implies, assumes a linear
relationship; namely, that f(x) = β0 + β1x

Patrick Breheny BST 764: Applied Statistical Modeling 2/31



Introduction
Splines

Parametric vs. nonparametric regression
Polynomial regression

Parametric vs. nonparametric approaches

This is the nature of parametric statistics: to reduce an
unknown and potentially complicated function down to a
simple form with a small number of unknown parameters

The nonparametric approach, in contrast, is to make as few
assumptions about the regression function f as possible

Instead, we will try to use the data as much as possible to
learn about the potential shape of f , allowing f to be very
flexible, yet smooth
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Basis functions

One approach for extending the linear model is to augment the
linear component of x with additional, derived functions of x:

f(x) =

M∑
m=1

βmhm(x),

where the {hm} are known functions called basis functions

Because the basis functions {hm} are prespecified and the
model is linear in these new variables, ordinary least squares
approaches for model fitting and inference can be employed

This idea is not new to you, as you have encountered
transformations and the inclusion of polynomial terms in
models in earlier courses
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Problems with polynomial regression

However, polynomial terms introduce undesirable side effects:
each observation affects the entire curve, even for x values far
from the observation

Not only does this introduce bias, but it also results in
extremely high variance near the edges of the range of x

As our authors put it, “tweaking the coefficients to achieve a
functional form in one region can cause the function to flap
about madly in remote regions”
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Problems with polynomial regression (cont’d)

To illustrate this, consider the following simulated example (gray
lines are models fit to 100 observations arising from the true f ,
colored red):
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Global versus local bases

Instead, let us consider local basis functions, thereby ensuring
that a given observation affects only the nearby fit, not the fit
of the entire line

In this lecture, we will explore piecewise basis functions

As we will see, splines are piecewise polynomials joined
together to make a single smooth curve

Patrick Breheny BST 764: Applied Statistical Modeling 7/31



Introduction
Splines

Definition and construction
Model fitting and inference

Bone mineral density data

As an example of a real data set with an interesting change in
E(y|x) as a function of x, we will look at a study of changes
in bone mineral density in adolescents

The outcome is the difference in spinal bone mineral density,
taken on two consecutive visits, divided by the average of the
two measurements

Age is the average age over the two visits

A person’s bone mineral density generally increases until the
individual is done growing, then remains relatively constant
until old age
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Bone mineral density data (cont’d)
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The piecewise constant model

To understand splines, we will gradually build up a piecewise
model, starting at the simplest one: the piecewise constant
model

First, we partition the range of x into K + 1 intervals by
choosing K points {ξk}Kk=1 called knots

For our example involving bone mineral density, we will
choose the tertiles of the observed ages, thereby giving three
basis functions:

h1(x) = I(x < ξ1)

h2(x) = I(ξ1 ≤ x < ξ2)

h3(x) = I(ξ2 ≤ x)
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The piecewise constant model (cont’d)
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The piecewise linear model
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The continuous piecewise linear model
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Basis functions for piecewise continuous models

These constraints can be incorporated directly into the basis
functions:

h1(x) = 1, h2(x) = x, h3(x) = (x− ξ1)+, h4(x) = (x− ξ2)+,

where (·)+ denotes the positive portion of its argument:

r+ =

{
r if r ≥ 0

0 if r < 0
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Basis functions for piecewise continuous models

It can be easily checked that these basis functions lead to a
composite function f(x) that:

Is everywhere continuous
Is linear everywhere except the knots
Has a different slope for each region

Also, note that the degrees of freedom add up: 3 regions × 2
degrees of freedom in each region - 2 constraints = 4 basis
functions
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Splines

The preceding is an example of a spline: a piecewise m− 1
degree polynomial that is continuous up to its first m− 2
derivatives

By requiring continuous derivatives, we ensure that the
resulting function is as smooth as possible

We can obtain more flexible curves by increasing the degree of
the spline and/or by adding knots

However, there is a tradeoff:

Few knots/low degree: Resulting class of functions may be too
restrictive (bias)
Many knots/high degree: We run the risk of overfitting
(variance)
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The truncated power basis

The set of basis functions introduced earlier is an example of
what is called the truncated power basis

Its logic is easily extended to splines of order m:

hj(x) = xj−1 j = 1, . . . ,m

hm+k(x) = (x− ξk)m−1
+ k = 1, . . . ,K

Note that a spline has m+K degrees of freedom
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Quadratic splines
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Cubic splines
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Additional notes

These types of fixed-knot models are referred to as regression
splines

Recall that cubic splines contain 4 +K degrees of freedom:
K + 1 regions × 4 parameters per region - K knots × 3
constraints per knot

It is claimed that cubic splines are the lowest order spline for
which the discontinuity at the knots cannot be noticed by the
human eye

There is rarely any need to go beyond cubic splines, which are
by far the most common type of splines in practice
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Implementing regression splines

The truncated power basis has two principal virtues:

Conceptual simplicity
Simpler models are nested inside it, leading to straightforward
tests of null hypotheses

Unfortunately, it has a number of computational/numerical
flaws – it’s inefficient and can lead to overflow and nearly
singular matrix problems

The more complicated but numerically much more stable and
efficient B-spline basis is often employed instead

Fortunately, one can use B-splines without knowing the details
behind their complicated construction
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Natural cubic splines

Polynomial fits tend to be erratic at the boundaries of the data

This is even worse for cubic splines

Natural cubic splines ameliorate this problem by adding the
additional (4) constraints that the function is linear beyond
the boundaries of the data

Note, then, that a natural cubic spline basis function with K
knots has K degrees of freedom
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Natural cubic splines (cont’d)
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Natural cubic splines, 6 df

Black line: 6 df natural cubic spline; red line: 6 df polynomial
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Natural cubic splines, 6 df (cont’d)
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Mean and variance estimation

Because the basis functions {hm} are fixed, model fitting and
inference are straightforward extensions of ordinary least
squares approaches:

The linear model is nested inside the spline representation, so
F -tests are valid
Confidence intervals can be constructed based on

Var(ΛT β̂) = σ2ΛT (XTX)−1Λ

Furthermore, extensions to logistic regression, Cox
proportional hazards regression, etc., are straightforward
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The bias problem

It is worth noting, however, that unless one makes the (rather
unlikely) assumption that the true f(x) is piecewise cubic
with continuous first and second derivatives at exactly the
knots you chose, bias will be present in its estimate

In particular, letting H = X(X′X)−1X′ denote the projection
matrix,

E(f̂) = Hf(x);

in words, the expected value of f̂ is not f(x) itself, but the
projection of f(x) onto the space of functions spanned by the
spline representation

Practically speaking, however, it is difficult to implement this,
as it depends on the unknown f(x), and the issue of bias is
typically ignored during inference
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Splines in R

R enables very low-level control over the construction of spline
bases using the splines package, which is typically installed
but not loaded with R

Given a vector x, the function bs constructs splines using the
B-spline basis alluded to earlier

X <- bs(x,knots=quantile(x,p=c(1/3,2/3)))

X <- bs(x,df=5)

X <- bs(x,degree=2,df=10)

X2 <- predict(X,newx=x2)

For natural cubic splines, the ns function works in the same
way
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Splines in SAS

A handful of procedures in SAS allow EFFECT statements,
which enable you to construct a set of basis functions and
handle them as a unit in specifying a model

The most notable of these procedures is PROC GLIMMIX:

PROC GLIMMIX DATA=bmd;

EFFECT AgeSpl = SPLINE(Age / KNOTMETHOD=PERCENTILES(3));

CLASS Gender;

MODEL Spnbmd = Gender|AgeSpl;

RUN;

Note that SPLINE uses a B-spline basis; to get natural cubic
splines, use NATURALCUBIC
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Mean and variance estimation (cont’d)
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Mean and variance estimation (cont’d)
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