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Introduction

Linear discriminant analysis begins by assuming that x|G
follows a multivariate normal distribution with a variance that
does not depend on the class G

Consider now doing away with this assumption and allowing
the class-conditional distributions to have unequal variances;
denote the variance given class k as Σk
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Quadratic discriminant analysis

Without the equal variance assumption, the convenient
cancellations of LDA do not occur:

δk(x) = log πk −
1

2
log |Σk| −

1

2
(x− µk)

TΣ−1k (x− µk);

in particular, note that the quadratic terms remain

The discriminant functions and decision boundaries therefore
become quadratic in x

This procedure is therefore called quadratic discriminant
analysis (QDA)
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Example 1
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Example 1
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Example 2
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Example 2
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R/SAS

QDA is implemented and easily run in both SAS and R

In SAS:

PROC DISCRIM DATA=Iris POOL=NO;

CLASS Species;

RUN;

In R (again requiring the MASS package):

fit <- qda(Species~.,Data)
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Car silhouette data

For the iris data set, whether we use LDA or QDA makes no
difference: we end up with the same predictions either way
(the probabilities differ, of course, but the class with the
highest probability does not)

Of course, this is not always the case

An example of a data set where QDA performs extremely well
is the Vehicle Silhouettes data set, in which, based on
computer images of the silhouettes of vehicles, the model is
made to predict between four vehicles: a bus, a van, and two
cars (a Saab and an Opel)
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Vehicle silhouette results

Leave-one-out cross validation results for LDA and QDA on the
vehicle silhouette data:

LDA
bus opel saab van

bus 209 8 11 2
opel 4 130 65 3
saab 2 67 128 2
van 3 7 13 192

QDA
bus opel saab van

bus 214 0 2 1
opel 0 160 54 2
saab 0 43 154 0
van 4 9 7 196

Overall CV error rates: 22.1% for LDA, 14.4% for QDA
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QDA on the small-sample iris data

Of course, QDA does not always outperform LDA; in fact it
often does quite a bit worse

For example, let’s compare LDA with QDA using the iris data
in the same manner as our earlier comparison involving
multinomial regression (randomly choose 5 observations per
class used as training data, the rest to test the fit of the
model)

QDA has a test error rate of 24.7%; far worse than LDA’s
5.2% and multinomial regression’s 7.7%
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Iris cross-validation comparison
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Remarks

Why does QDA do so poorly with n = 5 per class?

Consider the number of additional parameters that have to be
estimated by QDA: LDA must estimate one 4× 4 covariance
matrix (with 10 distinct parameters), whereas QDA must
estimate three such matrices

Thus, QDA must estimate 20 additional parameters, which is
a lot to ask with a sample size of 15

As usual, the tradeoff between LDA or QDA is one of bias and
variance – LDA makes stronger assumptions and obtains
estimates with lower variance, but has the potential for biased
decision boundaries if heterogeneity is truly present
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Ridge/lasso penalized multinomial regression

As a final topic for this section of the course, we will take a
brief tour of some of the ways in which penalization and
regularization can be applied to the methods of multinomial
regression and discriminant analysis

Extending ridge and lasso to logistic and multinomial
regression is fairly straightforward; the lasso estimate β̂ would
be minimize

Q(β) = − 1

n

K∑
k=1

∑
i|gi=k

log πik +

K∑
k=1

p∑
j=1

|βkj | ,

where

πik =
exp(ηki)∑
l exp(ηli)

and ηki = xT
i βk
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Penalization and identifiability

The ridge estimates would of course be defined similarly,
albeit with β2ki replacing |βkj |
For the most part, the extensions are straightforward; the only
noticeable change is with regard to the notion of a reference
category

In traditional multinomial regression, one category must be
chosen as a reference group (i.e., have βk set to 0) or else the
problem is not identifiable
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Penalization and identifiability (cont’d)

With penalized regression, this restriction is not necessary

For example, suppose K = 2; then β1j = 1, β2j = −1
produces the exact same {πik} as β1j = 2, β2j = 0

As it is impossible to tell the two models apart (and an
infinite range of other models), we cannot estimate {βk}
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Penalization and identifiability (cont’d)

With, say, a ridge penalty, this is no longer the case, as∑
k β

2
jk = 2 in the first situation and 4 in the second; the

proper estimate is clear

The same holds for the lasso penalty, although of course there
is now the possibility of sparsity, perhaps with respect to
multiple classes

For example, with λ = 0.1, the coefficient vector for petal
width in the iris data is (0, 0, 1.57)

In words, an increase of one cm in petal width increases the
log odds of virginica by 1.57 with respect to both setosa and
versicolor (those two species serving, in effect, as a common
reference group)
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Regularized discriminant analysis

The notion of regularization can also be extended to
discriminant analysis

For example, why commit ourselves to LDA or QDA when we
could consider the range of intermediary estimates given by

Σ̂k(α) = αΣ̂k + (1− α)Σ̂

With α = 0 we have LDA and with α = 1 we have QDA; in
between we have estimates that allow for class-specific
variances, but with shrinkage toward the common covariance
matrix
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Regularized discriminant analysis (cont’d)

Furthermore, one could consider regularizing Σ̂ itself in a
ridge-like manner:

Σ̂(γ) = γΣ̂ + (1− γ)I

Recall that the LDA/QDA estimates rely on Σ̂
−1

; thus, the
addition of a ridge down the diagonal is perhaps a very good
idea, as it stabilizes this inverse

Furthermore, it ensures that the inverse always exists
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Shrunken centroids

As final example of regularization, we could apply a lasso-type
penalty to the means {µk}
This would have the advantage of parsimony (a smaller
number of variables would actually be involved in the model)
as well as reduction of variance, especially in settings where p
is large

The means {µk} are sometimes called the centroids of the
classes; the method described on this slide is therefore called
nearest shrunken centroids
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