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Introduction

As mentioned previously, we are interested in estimating
Pr(G|x)
An obvious way to proceed is via Bayes’ Rule:

Pr(G = k|x) = fk(x)πk∑
l fl(x)πl

,

where

fk is the density of the explanatory variables among the
elements of class k
πk is the marginal (or prior) probability of being in class k
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Normal density model

If we are going to apply this idea, we are going to have to
estimate all the class densities {fk}
A straightforward way to proceed is to assume that fk is
multivariate normal:

fk(x) =
1

(2π)p/2 |Σk|1/2
exp

{
−1

2
(x− µk)

TΣ−1k (x− µk)

}
To simplify things, we will begin by assuming equal variances
across the classes: i.e., Σ1 = · · · = ΣK = Σ

In later lectures, we will consider relaxing this assumption
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Log probability ratio

We will now derive our main result for today: the discriminant
function and classification rules for the preceding approach

The proof is simplified by first stating the following lemma:
for any symmetric matrix A,

xTAx− yTAy = (x + y)TA(x− y)

Theorem: Suppose the class densities {fk} are multivariate
normal with common variance; then

log
Pr(G = k|x)
Pr(G = l|x)

= log
πk
πl
− 1

2
(µk + µl)

TΣ−1(µk − µl)

+ xTΣ−1(µk − µl)
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Discriminant function

Corollary: Suppose the class densities {fk} are multivariate
normal with common variance; then the discriminant function
for the above approach is

δk(x) = log πk −
1

2
µT
k Σ−1µk + xTΣ−1µk

Note that this function is linear in x; the above function is
therefore a linear discriminant function, hence the name linear
discriminant analysis (LDA) for this approach to modeling
Pr(G|x)
The linearity of δk(x) means that all decision boundaries
between any two classes k and l are linear in x (in p
dimensions, a hyperplane)
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Estimation

Of course, we do not know πk, µk, or Σ, so we will have to
estimate them:

π̂k =
nk
n
, where n is the number of observations

and nk is the number of observations in class k

µ̂k =
1

nk

∑
{i:gi=k}

xi

Σ̂ =
1

n−K
∑
k

∑
{i:gi=k}

(xi − µ̂k)(xi − µ̂k)
T ,

where the factor of n−K in the denominator ensures that Σ̂ is an
unbiased estimator of Σ
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Example #1: Class densities
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Example #1: Decision boundaries
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Example #2: Class densities
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Example #2: Decision boundaries
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Comparison with Linear Regression of Indicators
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Remarks

In the first example, the two approaches give quite similar
results

The second example illustrates that, unlike linear regression,
LDA does not suffer from the masking problem

Next time, we will apply LDA to some real data and compare
it with logistic/multinomial regression
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