Classification: Introduction

Patrick Breheny

September 13

Introduction

- We now turn our attention to discriminant analysis, a method for analyzing data in which the outcome variable is categorical
- In this section, we suppose that the outcome Y takes on values in a discrete set \mathcal{G}; for example:
- Type of leukemia: $\mathcal{G}=\{\mathrm{ALL}, \mathrm{AML}, \mathrm{CLL}, \mathrm{CML}\}$
- Type of brain cell:
$\mathcal{G}=\{$ Immature neuron, Mature neuron, Glial cell $\}$
- The task of developing a predictor $G(\mathbf{x})$, which predicts a value of \mathcal{G} depending on the explanatory variables \mathbf{x}, is often called classification

Notation and terminology

- Consider indexing the elements of \mathcal{G} with $1, \ldots, K$, where K is the number of classes, and let G_{i} denote the index of Y_{i}
- We will be discussing methods which model a discriminant function $\delta_{k}(\mathbf{x})$ for each class, and then classify \mathbf{x} according to the class with the largest discriminant function
- The decision boundary between classes k and l is the set of points for which $\delta_{k}(\mathbf{x})=\delta_{l}(\mathbf{x})$
- Ideally, such a method will also allow us to calculate $\operatorname{Pr}(G=k \mid \mathbf{x})$, as this is the most useful and interpretable discriminant function

Linear regression of an indicator matrix

- We begin by considering a very simplistic model: linear regression applied to indicator variables
- Let us rewrite the outcome as a K-dimensional vector of indicator variables, each indicating whether or not $G_{i}=k$
- We could then fit K linear regression models, one for each indicator
- Our discriminant function would then be $\delta_{k}(\mathbf{x})=\mathbf{x}^{T} \widehat{\boldsymbol{\beta}}_{k}$ - i.e., we classify according to the conditional expectation of Y given \mathbf{x}

How well does this work?

What went wrong?

The horizontal axis measures the position along the line joining the means of the three classes:

Masking

- The green class is masked by the other two - obviously, an undesirable effect
- This is an extreme example, but masking (complete or partial) can easily occur when K is large
- For this reason, linear regression is not a very good classifier -other methods, such as discriminant analysis and logistic/multinomial regression, do not suffer from the masking problem and perform much better

