Classification: Introduction

Patrick Breheny

September 13

Introduction

- We now turn our attention to *discriminant analysis*, a method for analyzing data in which the outcome variable is categorical
- In this section, we suppose that the outcome Y takes on values in a discrete set \mathcal{G} ; for example:
 - Type of leukemia: $\mathcal{G} = \{ALL, AML, CLL, CML\}$
 - Type of brain cell:
 - $\mathcal{G} = \{\mathsf{Immature neuron}, \mathsf{Mature neuron}, \mathsf{Glial cell}\}$
- The task of developing a predictor $G(\mathbf{x})$, which predicts a value of \mathcal{G} depending on the explanatory variables \mathbf{x} , is often called *classification*

Notation and terminology

- Consider indexing the elements of \mathcal{G} with $1, \ldots, K$, where K is the number of classes, and let G_i denote the index of Y_i
- We will be discussing methods which model a discriminant function δ_k(x) for each class, and then classify x according to the class with the largest discriminant function
- The decision boundary between classes k and l is the set of points for which $\delta_k({\bf x})=\delta_l({\bf x})$
- Ideally, such a method will also allow us to calculate $\Pr(G = k | \mathbf{x})$, as this is the most useful and interpretable discriminant function

Linear regression of an indicator matrix

- We begin by considering a very simplistic model: linear regression applied to indicator variables
- Let us rewrite the outcome as a K-dimensional vector of indicator variables, each indicating whether or not $G_i = k$
- We could then fit ${\cal K}$ linear regression models, one for each indicator
- Our discriminant function would then be $\delta_k(\mathbf{x}) = \mathbf{x}^T \hat{\boldsymbol{\beta}}_k i.e.$, we classify according to the conditional expectation of Y given \mathbf{x}

Introduction Linear regression of an indicator matrix

How well does this work?

 X_1

What went wrong?

The horizontal axis measures the position along the line joining the means of the three classes:

- The green class is *masked* by the other two obviously, an undesirable effect
- This is an extreme example, but masking (complete or partial) can easily occur when K is large
- For this reason, linear regression is not a very good classifier –other methods, such as discriminant analysis and logistic/multinomial regression, do not suffer from the masking problem and perform much better