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Introduction

We begin this course with a contrast of two simple, but very
different, methods: the ordinary least squares regression
model and the k-nearest neighbor prediction rule

The linear model makes huge assumptions about the structure
of the problem, but is quite stable

Nearest neighbors is virtually assumption-free, but its results
can be quite unstable

Each method can be quite powerful in different settings and
for different reasons
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Simulation settings

To examine which method is better in which setting, we will
simulate data from a simple model in which y can take on one
of two values: −1 or 1

The corresponding x values are derived from one of two
settings:

Setting 1: x values are drawn from a bivariate normal
distribution with different means for y = 1 and y = −1
Setting 2: A mixture in which 10 sets of means for each class
(1,−1) are drawn; x values are then drawn by randomly
selecting a mean from the appropriate class and then
generating a random bivariate normal observation with that
mean

A fair competition between the two methods is then how well
they do at predicting whether a future observation is 1 or −1
given its x values
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The linear model: A review

You are all familiar with the linear model, in which y is
predicted via:

ŷ = Xβ̂

To review, the linear model is fit (i.e., β is estimated) by
minimizing the residual sum of squares criterion:

RSS = (y −Xβ)T (y −Xβ)

Differentiating with respect to β, we obtain the so-called
normal equations:

XTXβ = XTy

Provided that X is of full rank, then the unique solution is

β̂ = (XTX)−1XTy
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Linear model results
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Linear model remarks

The linear model seems to classify points reasonably in setting
1

In setting 2, on the other hand, there are some regions which
seem questionable

For example, in the lower left hand corner of the plot, does it
really make sense to predict “blue” given that all of the
nearby points are “red”?
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Nearest neighbors

Consider then a completely different approach in which we
don’t assume a model, a distribution, a likelihood, or anything
about the problem: we just look at nearby points and base
our prediction on the average of those points

This approach is called the nearest-neighbor method, and is
defined formally as

ŷ(x) =
1

k

∑
xi∈Nk(x)

yi,

where Nk(x) is the neighborhood of x defined by its k closest
points in the sample
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Nearest neighbor results
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Nearest neighbor remarks

Nearest neighbor seems not to perform terribly well in setting
1, as its classification boundaries are unnecessarily complex
and unstable

On the other hand, the method seemed perhaps better than
the linear model in setting 2, where a complex and curved
boundary seems to fit the data better

Furthermore, the choice of k plays a big role in the fit, and
the optimal k might not be the same in settings 1 and 2
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Inference

Of course, it is potentially misleading to judge whether a
method is better simply because it fits the sample better

What matters, of course, is how well its predictions generalize
to new samples

Thus, consider generating new data sets of size 10,000 and
measuring how well each method does at predicting these
10,000 new results

By repeatedly simulating sample and prediction data sets, we
can estimate the long-run prediction accuracy of each method
in each of the two settings
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Simulation results

Black line = least squares; blue line = nearest neighbors
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Remarks

In setting 1, linear regression was always better than nearest
neighbors

In setting 2, nearest neighbors was usually better than linear
regression

However, it wasn’t always better than linear regression – when
k was too big or too small, the nearest neighbors method
performed poorly

In setting 1, the bigger k was, the better; in setting 2, there
was a “Goldilocks” value of k (about 25) that proved optimal
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The regression function

Let us now develop a little theory in order to provide insight
as to the reason for our simulation results

The nearest neighbors and least squares methods have the
common goal of estimating the regression function:

f(x) = E(Y |x),

although they go about it very differently:

Nearest neighbors conditions on those observations closest to
x and then estimates the expected value by taking the average
Least squares starts by making a strong assumption about f
and then uses all the data to estimate f
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Expected prediction error

If our model is asked to predict y given x, we can calculate
the prediction error

As we will see later on in the course, prediction error can be
measured in many ways; for now, it is most convenient to
consider squared error loss (y − f̂(x))2

A very reasonable criterion by which to judge a model is
therefore the expected value of the prediction error; with
squared error loss,

EPE = E{(Y − f̂(x))2|x}
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The bias-variance decomposition

Theorem: At a given point x0,

EPE = σ2 +Bias2(f̂) + Var(f̂),

where σ2 is the variance of Y |x0

Thus, expected prediction error consists of three parts:

Irreducible error; this is beyond our control and would remain
even if we were able to estimate f perfectly
Bias (squared); the difference between E{f̂(x0)} and the true
value f(x0)

Variance; the variance of the estimate f̂(x0)

The second and third terms make up the mean squared error
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The bias-variance decomposition: An illustration

An illustration from our textbook:

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2
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FIGURE 2.11. Test and training error as a function
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Limitations of nearest neighbor methods

Our earlier simulation results seem to suggest that if we
choose k appropriately, nearest neighbor methods can always
do at least roughly as well as linear regression, and sometimes
much better

To some extent, this holds true, provided that the dimension
of x is small

However, the statistical properties of nearest neighbor
methods worsen rapidly as p grows
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The curse of dimensionality

For example, suppose that x follows a uniform distribution on
the unit p-cube; how many points will be within a ball
centered at x0 of radius 0.2?

When p = 2 and n = 120, we can expect 15 points in the
neighborhood of x0

When p = 3, we need 448 observations to get 15 observations
in a neighborhood of the same size

When p = 10, we need over 57 million observations

This phenomenon is commonly referred to as the curse of
dimensionality, and we will return to it again in the course
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Conclusions

So where do we stand?

Fitting an ordinary linear model is rarely the best we can do

On the other hand, nearest-neighbors is rarely stable enough
to be used, even in modest dimensions, unless our sample size
is very large
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Conclusions (cont’d)

These two methods stand on opposite sides of the
methodology spectrum with regard to assumptions and
structure

Many of the methods we will discuss in this course involve
bridging the gap between these two methods – making linear
regression more flexible, adding structure and stability to
nearest neighbor ideas, or combining concepts from both

One of the main themes of this course will be the need to
find, develop, and apply methods that bring the right mix of
flexibility and stability that is appropriate for the data
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