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The empirical distribution function

Suppose X ∼ F , where F (x) = Pr(X ≤ x) is a distribution
function, and we wish to estimate some aspect of F (for
example, E{X} or Pr{X > 1})
The parametric approach is to assume that F has some
specific form, then estimate its parameters

The nonparametric alternative is the empirical distribution
function, F̂ , the CDF that puts mass 1/n at each data point
xi:

F̂ (x) =
1

n

n∑
i=1

I(xi ≤ x)

where I is the indicator function
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Empirical CDF: Cancer volume

From prostate study:
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Properties of F̂

At any fixed value of x,

E{F̂ (x)} = F (x)

Var{F̂ (x)} =
1

n
F (x)(1− F (x))

Note that these two facts imply that

F̂ (x)
P−→ F (x)

An even stronger proof of convergence is given by the
Glivenko-Cantelli Theorem:

sup
x

∣∣∣F̂ (x)− F (x)
∣∣∣ a.s.−→ 0
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Introduction

The empirical CDF is interesting in its own right, but also as
the fundamental component of a statistical approach called
the bootstrap

The bootstrap is an extremely important idea in modern
nonparametric statistics; indeed, Casella & Berger call it
“perhaps the single most important development in statistical
methodology in recent times”
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Derivation of bootstrap

Suppose we are interested in assessing the variance of an
estimate θ̂ = θ(x)

Its actual variance is given by

Var(θ̂) =

∫
· · ·
∫
{θ(x1, . . . , xn)− E(θ̂)}2dF (x1) · · · dF (xn)

where E(θ̂) =
∫
· · ·
∫
θ(x1, . . . , xn)dF (x1) · · · dF (xn)

There are two problems with evaluating this expression directly
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The ideal bootstrap

The first is that we do not know F

The natural solution is to plug in the empirical cdf, F̂ :

V̂ar(θ̂) =

∫
· · ·
∫
{θ(x1, . . . , xn)− Ê(θ̂)}2dF̂ (x1) · · · dF̂ (xn)

For reasons that will become clear, we will call this the ideal
bootstrap estimate
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The ideal bootstrap (cont’d)

The second problem, however, is that this integral is difficult
to evaluate

Because F̂ is discrete,

V̂ar(θ̂) =
∑
j

1

nn
{θ(xj)− Ê(θ̂)}2

where xj ranges over all nn possible combinations of the
observed data points {xi} (not all of which are distinct)

Unless n is small, this may take a long time to evaluate
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Monte Carlo approach

However, we can approximate this answer instead using Monte
Carlo integration – the technique we have been using all
semester long in our simulations

Instead of actually evaluating the integral, we approximate it
numerically by drawing random samples of size n from F̂ and
finding the sample average of the integrand

This approach gives us the bootstrap – an approximation to
the ideal bootstrap

By the law of large numbers, this approximation will converge
to the ideal bootstrap as the number of random samples that
we draw goes to infinity
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Bootstrap estimate of variance

The procedure for finding the bootstrap estimate of the variance
(or “bootstrapping the variance”) is as follows:

(1) Draw x∗
1, . . . ,x

∗
B from F̂ , where each bootstrap sample x∗

b is

a random sample of n data points drawn iid from F̂

(2) Calculate θ̂∗b , where θ̂∗b = θ(xb); these are called the bootstrap
replications

(3) Let

vboot =
1

B

B∑
b=1

{
θ̂∗b − θ̄∗

}2
,

where θ̄∗ = B−1
∑

b θ̂
∗
b
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Resampling

What does a random sample drawn from F̂ look like?

Because F̂ places equal mass at every observed value xi,
drawing a random sample from F̂ is equivalent to drawing n
values, with replacement, from {xi}
In practice, this is how the x∗

b ’s from step 1 on the previous
page are generated

This somewhat curious phenomenon in which we draw new
samples by sampling our original sample is called resampling
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Bootstrapping statistical models

The same approach can be applied to multivariate data and
statistical models, provided that the observations are still
independent and identically distributed

In this case, we resample elements of {xi, yi}ni=1 (i.e., rows of
our data set) and apply the model to {X∗

b ,y
∗
b}

It should be noted, however, that this approach treats X as
random

In certain cases where X is fixed, this approach does not
make sense; it is still possible to use the bootstrap for these
situations, but this involves bootstrapping the residuals of the
model and is somewhat more complicated
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Bootstrap estimation of the CDF of θ̂

The bootstrap is not limited to the variance – we can use it to
estimate any aspect of the sampling distribution of θ̂

In particular, we can calculate the 2.5th and 97.5th percentiles
of θ̂∗, thereby obtaining a 95% confidence interval for θ̂ that,
unlike θ̂ ± 1.96 SE, can be asymmetric and thereby reflect the
skewness of an estimate

This confidence interval is called the bootstrap percentile
interval

The percentile approach is not the only way of creating
bootstrap confidence intervals; actually, a considerable body
of research has been devoted to this problem, although it is
very simple, has nice properties, and is widely used.
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Implementation in R and SAS

Although it is not difficult to write your own for loop to
conduct bootstrapping (easier in R than SAS), both platforms
provide tools to do most of the work for you

In both platforms, bootstrapping is fairly simple, although you
must write your own function to analyze the data and return
θ̂∗
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R

Bootstrapping in R can be accomplished via the boot package
(by default, installed but not loaded)

The function you write to calculate θ̂∗ must be a function of
two arguments: the first is the original data and the second is
a vector of indices specific to the bootstrap sample

Thus, in order to use the bootstrap to, say, estimate the
standard error of the variance, you will need to define a
function like the following:

var.boot <- function(x,ind){var(x[ind])}
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boot example

Once you have defined such a function, its usage is
straightforward:

> boot(cavol,var.boot,1000)

...

Bootstrap Statistics :

original bias std. error

t1* 62.17922 -0.951639 17.24447

We can obtain bootstrap confidence intervals via:

> out <- boot(cavol,var.boot,1000)

> boot.ci(out,type="perc")

...

Level Percentile

95% (32.55, 98.88 )
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How big should B be?

What is a good value for B?

On the one hand, computing time increases linearly with B,
so we would like to get by with a small B

This desire is particularly acute if θ is complicated and
time-consuming to calculate

On the other hand, the lower the value of B, the less accurate
and more variable our estimated standard error is
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How big should B be? (cont’d)

How much accuracy do we lose by stopping at B bootstrap
samples instead of going to ∞?

This can be assessed by standard statistical methods: {θ̂∗b}
are iid and our SE estimate is a standard deviation

Generally speaking, published articles in recent years tend to
use 1000 bootstrap replications; however, for highly computer
intensive statistics, 100 or even 50 may be acceptable

However, each application is different – bootstrap data, just
like real data, often deserves a closer look: in the words of
Brad Efron, “it is almost never a waste of time to display a
histogram of the bootstrap replications”
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Histogram of bootstrap replications

out <- boot(cavol,var.boot,1000)

hist(out$t)

95% CI for bootstrap SE:
(16.8,18.4)

Histogram of out$t
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SAS implementation

In SAS, your function that calculates θ̂∗ must be a macro
called %analyze which takes two arguments: data and out

So, in order to use the bootstrap to study the sampling
distribution of the variance, we could write:

%macro analyze(data,out);

proc means noprint data=&data;

output out=&out(drop=_freq_ _type_) var=var_cavol;

var cavol;

run;

%mend;
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SAS implementation (cont’d)

To use the %boot and %bootci macros, you also need to
download the macro definitions (available on
support.sas.com or the course website) and source them:

%inc "jackboot.sas.txt";

You can then obtain bootstrap summaries and bootstrap
confidence intervals via:

%BOOT(data=prostate);

%BOOTCI(percentile);
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