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Belgian phone calls

We begin our discussion of robust regression with a simple
motivating example dealing with the number of phone calls
made per year in Belgium

The data set phones.txt contains two columns:

year

calls: Number of calls made (in millions)

As it turns out, there is a flaw in the data – for a period of
time from 1964-1969, the total length of calls was recorded
instead of the number
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Belgian phone calls: Linear vs. robust regression
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Robust loss

Robust regression methods achieve their robustness by
modifying the loss function

The linear regression loss function, l(r) =
∑

i r
2
i , increases

sharply with the size of the residual

One alternative is to use the absolute value as a loss function
instead of squaring the residual: l(r) =

∑
i |ri|

This achieves robustness, but is hard to work with in practice
because the absolute value function is not differentiable
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Huber’s loss function

An elegant compromise between these two loss functions was
proposed by Peter Huber in 1964 l(r) =

∑
i ρ(ri), where

ρ(ri) =

{
r2i if |ri| ≤ c
c(2 |ri| − c) if |ri| > c

Huber argued that c = 1.345 is a good choice, and showed
that asymptotically, it is 95% as efficient as least squares if
the true distribution is normal (and much more efficient in
many other cases)
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Loss functions
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Tukey’s biweight

The last loss function, proposed by Tukey and known as
Tukey’s biweight or Tukey’s bisquare, is given by:

ρ′(ri) =

ri
{
1−

(
ri
c

)2}2
if |ri| ≤ c

0 if |ri| > c

The value c = 4.685 is usually used for this loss function, and
again, it provides an asymptotic efficiency 95% that of linear
regression for the normal distribution
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M -estimators

Huber’s and Tukey’s estimators fall under the general category
of what are called M -estimators, because they are obtained by
(M)inimizing a loss function, or equivalently, solving∑

i

ψ(ri)xi = 0,

where ψ = ρ′

Note that the function ψ defines the M -estimator; this
function shows up constantly in the theory of M -estimators

Note also that “M-estimators” are a rather broad class; for
example, all MLEs are M-estimators

In particular, note that linear regression is an M -estimator
with ψ(ri) = ri
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The IRLS algorithm for robust regression

There are closed form solutions and fast algorithms for solving
the least squares problem as well as the weighted least squares
problem: ∑

i

wirixi = 0,

Thus, a convenient way to solve for M -estimators is to use an
iteratively reweighted least squares (IRLS) algorithm, in which
we calculate wi = ψ(ri)/ri, solve the weighted least squares
problem, re-calculate the weights, re-solve, and so on until
convergence

It should be noted that Tukey’s biweight allows for multiple
local minima, and this algorithm may not converge to the
global solution
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Estimating the scale parameter

The preceding derivations are slightly oversimplified, in that
the arguments for setting c = 1.345 or 4.685 are based on the
assumption that y has known variance 1

In reality, of course, this is not true, and we must apply the
loss functions to the scaled residuals – i.e., replace every ρ(ri)
with ρ(ri/s), and every ψ(ri) with ψ(ri/s), where s is an
estimated scale parameter

While a number of other estimators have been proposed, the
simplest is based on the median absolute deviation of the
residuals:

MAD = median{|ri|},

where ŝ = MAD/0.6745, based on the idea that, for the
standard normal, E(MAD) = 0.6745
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Inference

Similar to GLMs, robust regression can be shown to be
asymptotically normal:

√
n(β̂ − β)

d−→ N(0,V),

where V is the asymptotic variance-covariance matrix

Various estimators have been proposed to estimate V based
on various approximations:

V̂ = σ̂2(XTX)−1

V̂ = σ̂2(XTWX)−1

V̂ = σ̂2(XTWX)−1(XTX)(XTWX)−1,

where the quantity σ̂2 is not necessarily the same in the three
expression; all of which converge to the true variance V but
have various advantages and disadvantages
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Inference (cont’d)

With asymptotic normality and standard errors, we can calculate
Wald-style hypothesis tests and confidence intervals in the usual
way:
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SAS

In SAS, PROC ROBUSTREG can be used to perform robust
regression; its syntax is straightforward:

PROC ROBUSTREG DATA=phones;

MODEL Calls = Year;

RUN;

By default, SAS uses Tukey’s biweight; to specify Huber’s
approach, submit:

PROC ROBUSTREG DATA=phones METHOD=M(WF=Huber);

MODEL Calls = Year;

RUN;
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R

In R, the MASS library provides the function rlm, a robust
companion to lm:

fit <- rlm(calls~year,phones)

Somewhat peculiarly, the maximum number of iterations has
a default of 20 (the SAS default is 1,000); thus, you may need
to increase this number using

fit <- rlm(calls~year,phones,maxit=50)

In R, the default is Huber’s approach; to obtain Tukey’s
biweight, use the psi option:

fit <- rlm(calls~year,phones,psi=psi.bisquare)
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Scottish hill races

Another classic data set in the outlier/robust regression
literature contains information on hill racing (apparently a
somewhat popular sport in Scotland)

The data set hills.txt contains information on the winning
times in 1984 for 35 Scottish hill races, as well as two factors
which presumably influence the duration of the race:

dist: The distance of the race (in miles)
climb: The elevation change (in feet)
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Residuals from OLS fit
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Hill races: LS vs OLS

Comparing the results of three estimation techniques:

OLS Huber Tukey
β SE β SE β SE

Dist. (1 mile) 6.22 0.60 6.55 0.25 6.64 0.21
Climb (100 ft) 1.10 0.21 0.83 0.08 0.65 0.07

Note that there are two large outliers in this data set: as they
are downweighted, there is a modest change in the estimates
(the distance estimate goes up, while the climb estimate goes
down), and a large drop (2-3 fold) in the standard error
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