Principal components analysis I

Patrick Breheny

November 17

Introduction

- At the end of the previous lecture, I suggested that the singular values decomposition could be used to reduce the dimensionality of the data set
- This is the key idea behind principal components analysis - to reduce the dimension of \mathbf{X} while accounting for as much of the information in \mathbf{X} as possible
- This aim is achieved by transforming to a new set of variables (the principal components) that are linear combinations of the original variables
- The new set of variables have lower dimension and are uncorrelated, both of which greatly simplify description, summarization, analysis, and model fitting

Principal components in terms of SVD components

- Suppose that we have centered and scaled \mathbf{X} so that all of its columns have mean zero and variance 1 , and let $\mathbf{X}=\mathbf{U D V}^{T}$ be the SVD of this centered and scaled matrix
- By convention, the singular values $\left\{d_{j}\right\}$ and their associated vectors $\left\{\mathbf{u}_{j}\right\}$ and $\left\{\mathbf{v}_{j}\right\}$ are ordered, so that $d_{1} \geq d_{2} \geq \cdots \geq d_{p}$
- Now, the variables $d_{j} \mathbf{u}_{j}$ are called the principal components of the original data \mathbf{X}, for reasons that we will now describe

Properties of principal components

- First, note that the principal components are linear combinations of the original variables:

$$
\mathbf{X} \mathbf{v}_{j}=d_{j} \mathbf{u}_{j}
$$

- Furthermore, $\operatorname{Var}\left(d_{1} \mathbf{u}_{1}\right) \geq \operatorname{Var}\left(d_{2} \mathbf{u}_{2}\right) \geq \cdots \geq \operatorname{Var}\left(d_{p} \mathbf{u}_{p}\right)$
- Indeed, out of all possible vectors \mathbf{z} that can be formed from a normalized linear combination of the original explanatory variables (i.e., such that $\mathbf{z}=\mathbf{X a}$ where $\mathbf{a}^{T} \mathbf{a}=1$), the variable with the largest variance is $d_{1} \mathbf{u}_{1}$
- Out of all possible normalized linear combinations \mathbf{z}, the one that has the largest variance and is orthogonal to the first combination (i.e., such that $\mathbf{z}^{T} \mathbf{u}_{1}=0$) is $d_{2} \mathbf{u}_{2}$, and so on

Properties of principal components (cont'd)

- Recall that $\left\{d_{j}^{2}\right\}$ are the eigenvalues of $\mathbf{X}^{T} \mathbf{X}$, and that $\sum_{j} \lambda_{j}=\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)$
- Thus, the j th principal component accounts for a proportion p_{j} of the total variation in the original data:

$$
p_{j}=\frac{d_{j}^{2}}{\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)}
$$

- Note that, as \mathbf{X} has been centered, the elements on the diagonal of $\mathbf{X}^{T} \mathbf{X}$ are proportional to the variance of each of the original explanatory variables

More terminology

To summarize,

- The vectors \mathbf{v}_{j} (the columns of \mathbf{V}) are the principal component directions, or loadings, and they describe the transformation process by which the new variables are created out of the old
- The vectors \mathbf{u}_{j} (the columns of \mathbf{U}) are the normalized principal components (sometimes called the principal component scores)
- The singular values d_{j} are used to rank the principal components in term of importance

An illustration

Uses for principal component analysis

- The general hope of principal components analysis is that the first few principal components will contain almost all the relevant information for the problem, and can therefore provide a convenient lower-dimensional summary of the data
- The two most common uses for principal components are:
- As a means of constructing informative graphical summaries of multivariate data
- As inputs for regression
- Occasionally, principal components are also of interest directly, as a way of extracting underlying, latent factors from data

How many components?

- Given that we would like to reduce the dimension of the problem by selecting some smaller number of principal components, an obvious next question is: how many components?
- A number of approaches have been proposed, both formal and informal
- We will present the two most common informal approaches here, and illustrate their use on our heart disease data set
- Recall that this data set had a number of highly correlated variables (cholesterol, body fat \%, BMI, etc.)

Cumulative proportion explained

One possibility is to base the decision on the cumulative proportion explained, and when it crosses some threshold; say, 75%

Scree plot

Another approach is to plot is to plot $\left\{d_{j}^{2}\right\}$ and base the decision on when the proportion of variance explained falls below $1 / p$ (this plot is known as a scree plot:

Component

Scree plot (cont'd)

- Alternatively, one can take the more subjective approach of looking at the scree plot and subjectively identifying an "elbow" where the slope changes from steep to shallow
- This rule would suggest retaining only the first principal component; the other two rules suggest retaining three or four

Heart disease data: Loadings

Let's continue with our heart disease example, and inspect the first four principal components; below are the loadings:

	PC1	PC2	PC3	PC4
sbp	-0.32	0.24	-0.13	-0.20
tobacco	-0.30	0.46	0.07	0.01
Idl	-0.33	-0.36	0.00	0.14
adiposity	-0.52	-0.19	-0.08	-0.14
typea	0.02	-0.28	0.79	-0.21
obesity	-0.40	-0.39	0.04	-0.31
alcohol	-0.12	0.54	0.46	-0.26
age	-0.46	0.19	-0.14	0.16
famhist	-0.20	0.00	0.34	0.83

Note: the direction (\pm) of each vector is arbitrary

Interpretation

Thus, with some oversimplification:

- The first principal component distinguishes young, slim people with low cholesterol and blood pressure from old, overweight people with high blood pressure and cholesterol
- The second principal component primary reflects smoking and drinking
- The third principal component predominantly reflects stress
- The fourth principal component predominantly reflects family history

Plotting the principal components

Gray=Healthy, Red=CHD

Plotting the principal components (cont'd)

			$\begin{gathered} -0.10 \\ -0.05 \\ -0.00 \\ \\ -0.10 \\ \hline \end{gathered}$		$\begin{array}{cc} 1 & 1 \\ 0.05 & 0.10 \\ 0.00 \\ -0.05- \\ -0.10 \end{array}-$
		$\left[\begin{array}{cccc} -0.2 & & 0.1 & 0.4 \\ -0.1 & & & \\ & & & \\ & & & 0.0 \\ & & -0.1 \\ -0.1 & 0.0 & \\ 1 & 1 & \\ \hline \end{array}\right]$			
	$\left.\begin{array}{\|ccc\|}\hline-0.20 & 0.05 & 0.15 \\ -0.15 & 0.05 \\ -0.10 & & \\ -0.05 & \mathrm{~V} 2 & 0.05 \\ & & 0.00 \\ & & -0.05 \\ -0.10 & 0.00 & -0.10 \\ \hline & 1 & 1\end{array}\right]-$				
$\left.\begin{array}{\|ccc\|}\hline-0.10 & 0.00 & 0.05 \\ & 0.10 \\ -0.05 & & \\ -0.00 & \mathrm{~V} 1 & 0.00 \\ & & -0.05 \\ & & \\ -0.10 & & 0.00 \\ 1 & -0.10\end{array}\right]$					

