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Introduction

The next topic in our course, principal components analysis,
revolves around decomposing large, complicated, multivariate
relationships into simple uncorrelated elements

Today’s lecture is a primer on the mathematical tools that
provide the basis for these methods

The proofs of most of today’s results are beyond the scope of
this course, but the results themselves we will use going
forward to derive statistical methods and establish theoretical
results
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Direction and length

One can think about decomposing a vector v into two
separate pieces of information, its direction d and its length λ:

λ = ‖v‖ =
√∑

j

v2j

d =
v

λ

This makes it easier to work with the magnitude of a vector
(λ is a scalar) while ignoring its direction, and vice versa (e.g.,
rotating a vector)
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Eigenvalues and eigenvectors

This idea can be extended to matrices as well – after all, what
is a matrix A but a collection of vectors?

This is the idea behind eigenvalues and eigenvectors, which
are defined according to this equation:

Av = λv

Any vector of unit length v which satisfies this equation is
special to A: when A operates in that direction, it acts
merely to elongate or shrink

In other words, the vector is not rotated, and direction is
preserved
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Eigenvalues and eigenvectors (cont’d)

The v’s which satisfy this equation are called eigenvectors

The λ’s are the eigenvalues

We will begin by considering the case where A is symmetric;
later in the lecture, we will consider more general cases
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Number of solutions

Theorem: If A is a symmetric n× n matrix, then it has
exactly n pairs {λj ,vj} which satisfy the equation

Av = λv

The n eigenvalues are sometimes referred to as the spectrum
of A
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Eigenvalues, traces, and determinants

Theorem: If A has eigenvalues λ1, λ2, . . . , λn,

tr(A) =

n∑
i=1

λi

Theorem: If A has eigenvalues λ1, λ2, . . . , λn,

|A| =
n∏

i=1

λi
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Eigenvalues and positive definite matrices

Theorem:

A positive definite⇔ all eigenvalues of A are positive

Theorem:

A positive semidefinite⇔ all eigenvalues of A are nonnegative

Patrick Breheny BST 764: Applied Statistical Modeling 8/20



Eigenvalues and eigenvectors
The singular value decomposition

Decomposition

Perhaps the most useful aspect of eigenvalues is that they can
be used to factor a matrix into simpler elements

This general notion is referred to as matrix factorization or
matrix decomposition, and it is the main idea behind principal
component analysis

We introduce now a factorization for symmetric matrices
called the eigendecomposition; a more general factorization
called the singular value decomposition will be introduced
later and applies to all matrices
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Eigendecomposition

Lemma: If A is a symmetric matrix, its eigenvectors are
orthonormal.

Theorem: Any symmetric matrix A can be factored into:

A = QΛQT ,

where Λ is a diagonal matrix containing the eigenvalues of A,
and the columns of Q contain its orthonormal eigenvectors

Patrick Breheny BST 764: Applied Statistical Modeling 10/20



Eigenvalues and eigenvectors
The singular value decomposition

Inverses

Theorem: Suppose A has eigenvectors Q and eigenvalues
{λi}. Then A−1 has eigenvectors Q and eigenvalues {λ−1

i }
In other words, if A = QΛQT ,

A−1 = QΛ−1QT
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Rank

As you may have supposed from the fact that eigenvalues are
intricately tied up with determinants and inverses, they are
also related to the rank of a matrix

Theorem: Suppose A has rank r. Then A has r nonzero
eigenvalues, and the remaining n− r eigenvalues are equal to
zero.
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Eigenvalues in action: Ridge regression

To get a sense for how these facts are useful in statistics, let’s
look back at some unproven theorems from our lecture on
ridge regression

Theorem: For any design matrix X, the quantity XTX + λI
is always invertible; thus, there is always a unique solution

β̂
ridge

Theorem: The degrees of freedom for a ridge regression
estimate are ∑ λi

λi + λ
,

where {λi} are the eigenvalues of XTX
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Diagonalization

We have seen that eigenvalues are useful because they allow
you, when performing certain tasks, to do away with all the
complexities of matrix algebra and work on the more familiar
level of scalars

This was possible because all the relevant computations took
place on a diagonal matrix, Λ

This idea is known as diagonalization

Perhaps the most amazing result in all of linear algebra is that
any matrix can be diagonalized in what is known as the
singular value decomposition
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The singular value decomposition

Theorem: For any matrix A, we can write

A = UDVT ,

where D is a diagonal matrix with nonnegative entries, and
both U and V are orthogonal (i.e., UTU = VTV = I).

Non-square matrices do not have eigenvalues, but the
elements of D (called the singular values of A) are the square
roots of the eigenvalues of ATA (or AAT )

Patrick Breheny BST 764: Applied Statistical Modeling 15/20



Eigenvalues and eigenvectors
The singular value decomposition

Dimensions of the SVD

If A is an n× n matrix, then U, D, and V are all n× n
matrices

If A is an n× p matrix with n > p, then U is n× p, while
both D and V are p× p matrices

If A is an n× p matrix with n < p, then VT is n× p, while
both D and U are n× n matrices

In other words, D is square, with dimension equal to the
minimum of n and p
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SVD, applied to ridge regression

As before, let’s go back to ridge regression for an example of
the singular value decomposition in action

Theorem: Let X = UDVT . Then

XTX = VD2VT

X(XTX)−1XTy = UUTy

XTX + λI = V(D2 + λI)VT

X(XTX + λI)−1XTy = USUTy,

where S is a diagonal matrix with elements

Sjj =
d2j

d2j + λ
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Remarks

Once again we see the shrinkage aspect of ridge regression

Note, however, that small values of dj are shrunken quite a
lot, while large values are shrunk very little

What do small values of dj mean?

Recall the connection between the singular values and
eigenvalues; in particular, if X has rank r, then D has r
nonzero elements
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Remarks (cont’d)

The preceding remark holds in a more qualitative sense as
well; if X is nearly singular (i.e., has problems with
multicollinearity, but is still full rank), then it will have one or
more dj very close to zero

Thus we have another view of how ridge regression stabilizes
estimation in the presence of multicollinearity:

dj
d2j + λ

is highly variable and approaches being undefined as dj → 0 if
λ is not present, but with ridge regression, the quantity is
much more stable
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Dimension reduction

Instead of shrinkage, a different approach is to eliminate all
the small singular values

In other words, suppose that X contains 10 explanatory
variables, but that two of its singular values are near zero

We can eliminate those two values and deal with a more
stable, rank-8 version of X

This is the main idea behind principal components analysis,
and we will get into specifics in the next lecture; for now, let
me mention that this idea, of approximating a matrix with a
low-rank version of it that hopefully captures all the important
information, goes far beyond statistics and is widely used to
reduce the storage and computations involved in working with
large matrices
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