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Introduction

The idea of using kernels to combine local estimates in a
smooth way has applications beyond that of regression and
GAMs

Another application for which they are widely used is in
density estimation: given a set of iid observations {yi}, can
we estimate the density of the underlying distribution, f(y)?

Similar to the case for regression, the parametric approach is
to assume a specific form (e.g., normal) for f , whereby the
problem reduces to one of estimate a small number of
unknown parameters (e.g., µ and σ2)
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Kernel density estimates

Kernels can be used to construct nonparametric estimates for
f that make no such assumptions

Specifically, consider estimators of the following form:

f̂(x0) =
1

nλ

∑
i

K

(
xi − x0
λ

)
,

where the kernel K integrates to 1

NOTE: For the definitions given in the 10-20 notes, the
tri-cube kernel does not integrate to 1, although it can be
made to do so by including a normalizing constant; this
constant is already included for the Epanechnikov kernel
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Gaussian kernel: density estimate

An example using the Gaussian density as the kernel function
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Example: Old Faithful eruptions

As an example of a density estimation problem, consider data
collected on the waiting times between eruptions of the Old
Faithful geyser in Yellowstone National Park

The data were collected from August 1 to August 15, 1985,
by the park’s geologist
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Density estimates at different bandwidths
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Automatic selection of bandwidth

A surprisingly large number of methods for choosing an
optimal bandwidth have been developed

The approaches are based on minimizing the mean integrated
squared error: ∫

E{f̂(x)− f(x)}2dx,

or rather, an asymptotic approximation of it

The problem, as we have encountered many times already, is
that this expression contains a bias term which depends on∫
f ′′(x)2dx, and is therefore impossible to evaluate without

knowing the true f
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Normal reference rule

One simple solution is to use the value of
∫
f ′′(x)2dx for the

normal distribution

This approach is called the normal reference rule

This is a convenient rule of thumb, but if the true f is very
different from the normal, this can result in an oversmoothed
density
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Other approaches

An alternative approach comes from Sheather and Jones
(1991), who use a so-called “pilot bandwidth” λ0 to estimate∫
f ′′(x)2dx

Another method called biased cross-validation is based on
setting up a grid of λ values and then calculating

∫
f ′′λ (x)

2dx
for each value (the name is a misnomer, cross-validation is not
actually involved)

Finally, you can actually use cross-validation and minimize the
quantity ∫

f̂2(x)dx− 2
∑
i

1

n
f̂(−i)(xi)
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Bandwidth selection methods: Example
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Remarks

Note that the normal reference approach produces the
smoothest estimate; this is true in general

In this particular example, there is no meaningful difference
between cross-validation/Sheather-Jones/BCV, although this
is not always the case

Indeed, many authors find cross-validation unsatisfactory, in
that it often produces an estimate quite a bit “rougher” than
a person would obtain from visually smoothing the histogram

However, it should be noted that unlike the others,
cross-validation is an unbiased estimate of the optimal
bandwidth, regardless of how smooth the underlying density is
(provided, of course, that it is still continuously differentiable)
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PROC KDE

Kernel density estimates are available in SAS via PROC KDE:

ods graphics on;

proc kde data=faithful;

univar waiting / plots=(density histogram histdensity);

run;

ods graphics off;

By default, PROC KDE uses a Gaussian kernel and selects λ
using the Sheather-Jones approach

You can change how λ is selected via the / METHOD= option,
but the Gaussian is the only available kernel

You can also manually adjust λ by specifying / BWM=2 to
select a bandwidth twice as large as the original
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The density function

Kernel density estimates are available in R via the density
function:

d <- density(faithful$waiting)

plot(d)

By default, density uses a Gaussian kernel, but a large
variety of other kernels are available by specifying the kernel

option

By default, density selects λ using normal reference, but
again, other options are available: bw=‘‘SJ’’ for
Sheather-Jones, bw=‘‘bcv’’ for biased cross-validation, and
bw=‘‘ucv’’ for regular (unbiased) cross-validation

In addition, you can directly specify bandwidth (bw=3) or
adjust the original via adjust, which works exactly like SAS’s
BWM
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Exercise

Exercise: The course website contains a data set from the
National Health and Nutrition Examination Survey (NHANES)
that lists the triglyceride levels of 3,026 adult women.

(a) Obtain a kernel density estimate for the distribution of
triglyceride levels in adult women and plot it. You are free to
decide on whatever kernel and bandwidth you like, but
describe which ones you used.

(b) Obtain a parametric density estimate assuming that
triglyceride levels follow a normal distribution and overlay this
density estimate with your estimate from (a).
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Multivariate densities

As we discussed last week, it is straightforward to extend the
idea of kernels to multiple dimensions:

f̂(x0) =
1

n

∑
i

p∏
j=1

1

hj
K

(
xij − x0j

hj

)
where p is the dimension of x

In the Old Faithful data set, two variables are recorded:
duration of the eruption and the waiting time until the next
eruption
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Old faithful data: Duration vs. waiting time
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Old faithful 2D density estimate: contour plot
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Old faithful 2D density estimate: perspective plot
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Implementation and limitations

The density function is exclusively for one-dimensional
kernel density estimation, but 2D density estimates like the
ones just presented are available via the KernSmooth package
in R; in SAS, simply replace the UNIVAR statement with a
BIVAR statement

As we have discussed, although one can easily write down an
expression for the kernel density estimate in higher
dimensions, the statistical properties of the estimator worsen
rapidly as p grows
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Classification

Density estimation is interesting in its own right, but also a
means for classification

Recall that in LDA, we carried out classification by Bayes’ rule:

Pr(G = k|x) = fk(x)πk∑
l fl(x)πl

,

where the densities {fk} were estimated based on assuming
multivariate normality

Alternatively, we could estimate them using kernel density
estimates
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Coronary heart disease study

For example, recall our study of coronary heart disease

Let’s focus on the relationship between CHD and stress (type
A score)
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Kernel density estimates
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Estimate of posterior probability
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Evaluation

As we can see, unlike LDA, the kernel density classifier is not
restricted to a linear function, although it seems rather
unstable in regions where there is little data

Furthermore, as we have seen, there will be many regions with
little data when we move to higher dimensions
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The independence assumption

Thus, the simplifying assumption of independence is often
made:

f̂k(x) =

p∏
j=1

f̂kj(xj),

where f̂jk is an estimate of the density of the jth variable for
the kth class

This assumption is, generally speaking, not true, and the
above estimate goes by the not particularly inspiring name of
the naive Bayes classifier

However, it drastically reduces variance and alleviates the
curse of dimensionality and often performs well as a classifier

Patrick Breheny BST 764: Applied Statistical Modeling 25/26



Density estimation
Multivariate densities

Kernel density classification

Connection to additive models

Finally, note that for the naive Bayes classifier,

logit(y = 1|x) = β0 +

K∑
k=1

gj(xj)

Thus, the naive Bayes classifier is a way of constructing an
additive logistic regression model, with flexible functions gk
determining the impact of xk on the log-odds that y = 1
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