Smoothing splines

Patrick Breheny

October 4

• We are discussing ways to estimate the regression function f, where

$$\mathcal{E}(y|x) = f(x)$$

- One approach is of course to assume that *f* has a certain shape, such as linear or quadratic, that can be estimated parametrically
- A better though still parametric approach is to use splines, wherein the basis functions act locally, yet produce a smooth \hat{f}

Problems with knots

- Fixed-df splines are very useful tools, but they do have one shortcoming: the placement of knots
- Choices regarding the number of knots and where they are located are not particularly easy to make in a systematic and data-driven manner
- Furthermore, assuming that you place knots at quantiles or equally spaced intervals, models will not be nested inside each other, which complicates hypothesis testing

Controlling smoothness with penalization

- We can avoid the knot selection problem altogether by using penalization to formulate the problem in a nonparametric way
- Here, we directly solve for the function *f* that minimizes the following objective function, a penalized version of the least squares objective:

$$\sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(u)\}^2 du$$

• The first term captures the fit to the data, while the second penalizes curvature – note that for a line, f''(u) = 0 for all u

Connection with splines

- Here, λ is the smoothing parameter, and it controls the tradeoff between the two terms:
 - $\lambda=0$ imposes no restrictions and f will therefore interpolate the data
 - $\lambda=\infty$ renders curvature impossible, thereby returning us to ordinary linear regression
- It may sound impossible to solve for such an *f* over all possible functions, but the solution turns out to be surprisingly simple: *f* must be a natural cubic spline

Derivation and theory Selection of λ Inference

Terminology

- First, some terminology:
 - The parametric splines with fixed degrees of freedom that we have talked about so far are called *regression splines*
 - A spline that passes through the points $\{x_i, y_i\}$ is called an *interpolating spline*, and is said to interpolate the points $\{x_i, y_i\}$
 - A spline that describes and smooths noisy data by passing close to $\{x_i, y_i\}$ without the requirement of passing through them is called a *smoothing spline*

Derivation and theory Selection of λ Inference

Natural cubic splines are the smoothest interpolators

Theorem: Out of all twice-differentiable functions passing through the points $\{x_i, y_i\}$, the one that minimizes

$$\lambda \int \{f''(u)\}^2 du$$

is a natural cubic spline with knots at every unique value of $\{x_i\}$

Derivation and theory Selection of λ Inference

Natural cubic splines solve the nonparametric formulation

Theorem: Out of all twice-differentiable functions, the one that minimizes

$$\sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(u)\}^2 du$$

is a natural cubic spline with knots at every unique value of $\{x_i\}$

Derivation and theory Selection of λ Inference

Let $\{N_j\}_{j=1}^n$ denote the collection of natural cubic spline basis functions and N denote the $n \times n$ design matrix consisting of the basis functions evaluated at the observed values:

N_{ij} = N_j(x_i)
f(x) = Σⁿ_{j=1} N_j(x)β_j
f(**x**) = **N**β

Derivation and theory Selection of λ Inference

Solution

• The penalized objective function is therefore

$$(\mathbf{y} - \mathbf{N}oldsymbol{eta})^T (\mathbf{y} - \mathbf{N}oldsymbol{eta}) + \lambdaoldsymbol{eta}^T \mathbf{\Omega}oldsymbol{eta}$$
 ,

where
$$\mathbf{\Omega}_{jk} = \int N_j''(t) N_k''(t) dt$$

• The solution is therefore

$$\widehat{\boldsymbol{\beta}} = (\mathbf{N}'\mathbf{N} + \lambda \boldsymbol{\Omega})^{-1}\mathbf{N}'\mathbf{y}$$

Derivation and theory Selection of λ Inference

Smoothing splines are linear smoothers

Note that

$$egin{aligned} \hat{\mathbf{y}} &= \mathbf{N} (\mathbf{N}' \mathbf{N} + \lambda \mathbf{\Omega})^{-1} \mathbf{N}' \mathbf{y} \ &= \mathbf{S}_{\lambda} \mathbf{y}; \end{aligned}$$

in other words, smoothing spline estimates are linear (nonparametric regression estimates with this property are said to be *linear smoothers*)

• As with ridge regression, this property provides us with a convenient way to calculate (or approximate) the leave-one-out cross-validation score as well as define the degrees of freedom of the estimate:

$$GCV = \frac{1}{n} \sum_{i} \left(\frac{y_i - \hat{y}_i}{1 - \operatorname{tr}(\mathbf{S}_{\lambda})/n} \right)^2$$
$$df_{\lambda} = \operatorname{tr}(\mathbf{S}_{\lambda})$$

Derivation and theory Selection of λ Inference

CV, GCV for BMD example

Derivation and theory Selection of λ Inference

Undersmoothing and oversmoothing of BMD data

Selection of λ nference

Sampling distribution for smoothing splines

- The fact that smoothing splines are linear estimators greatly simplifies inference as well
- Theorem: Suppose that $y_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$; then

$$\hat{f}(\mathbf{x}) \sim N\left(\bar{f}(\mathbf{x}), \sigma^2 \mathbf{S}_{\lambda} \mathbf{S}_{\lambda}\right),$$

where $\bar{f}(\mathbf{x}) = \mathbf{S}_{\lambda} f(\mathbf{x})$, the projection of $f(\mathbf{x})$ onto the space spanned by the natural cubic spline basis given the constraint on its integrated squared second derivative implied by λ

• In practice, we typically assume that $f(\mathbf{x}) - \bar{f}(\mathbf{x})$ is small, and use the above relationship to construct confidence intervals for $f(\mathbf{x})$ despite the fact that technically, they are intervals for $\bar{f}(\mathbf{x})$

Derivation and theory Selection of λ Inference

\mathbf{S}_{λ} versus \mathbf{H}

- Note that the smoothing matrix S_{λ} is quite similar to the projection matrix H from linear regression
- $\bullet\,$ In particular, both ${\bf S}_{\lambda}$ and ${\bf H}$ are symmetric and positive semidefinite
- However, H is idempotent (*i.e.*, HH = H), whereas S_λS_λ is smaller than S_λ (in the sense that S_λ S_λS_λ is positive semidefinite), because S_λ introduces shrinkage, biasing estimates towards zero in order to reduce variance

Derivation and theory Selection of λ Inference

Estimation of σ^2

• Theorem: For any linear smoother,

$$E\sum_{i}(y_{i}-\hat{y}_{i})^{2}=\sigma^{2}\mathrm{tr}\left((\mathbf{I}-\mathbf{S}_{\lambda})^{T}(\mathbf{I}-\mathbf{S}_{\lambda})\right)+\mathbf{b}^{T}\mathbf{b},$$

where $\mathbf{b} = f(\mathbf{x}) - \bar{f}(\mathbf{x})$

• Thus, assuming that the bias term is small, the following is a nearly unbiased estimator for σ^2 :

$$\hat{\sigma}^2 = \frac{\sum_i (y_i - \hat{y}_i)^2}{n - p^*},$$

where $p^* = 2 \operatorname{tr}(\mathbf{S}_{\lambda}) - \operatorname{tr}(\mathbf{S}_{\lambda}\mathbf{S}_{\lambda})$

• The quantity p^* is known as the *equivalent number of* parameters, by analogy with linear regression, and differs slightly from the equivalent degrees of freedom

Derivation and theory Selection of λ Inference

Pointwise confidence bands

