Smoothing splines

Patrick Breheny

October 4

Introduction

- We are discussing ways to estimate the regression function f, where

$$
\mathrm{E}(y \mid x)=f(x)
$$

- One approach is of course to assume that f has a certain shape, such as linear or quadratic, that can be estimated parametrically
- A better - though still parametric - approach is to use splines, wherein the basis functions act locally, yet produce a smooth \hat{f}

Problems with knots

- Fixed-df splines are very useful tools, but they do have one shortcoming: the placement of knots
- Choices regarding the number of knots and where they are located are not particularly easy to make in a systematic and data-driven manner
- Furthermore, assuming that you place knots at quantiles or equally spaced intervals, models will not be nested inside each other, which complicates hypothesis testing

Controlling smoothness with penalization

- We can avoid the knot selection problem altogether by using penalization to formulate the problem in a nonparametric way
- Here, we directly solve for the function f that minimizes the following objective function, a penalized version of the least squares objective:

$$
\sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda \int\left\{f^{\prime \prime}(u)\right\}^{2} d u
$$

- The first term captures the fit to the data, while the second penalizes curvature - note that for a line, $f^{\prime \prime}(u)=0$ for all u

Connection with splines

- Here, λ is the smoothing parameter, and it controls the tradeoff between the two terms:
- $\lambda=0$ imposes no restrictions and f will therefore interpolate the data
- $\lambda=\infty$ renders curvature impossible, thereby returning us to ordinary linear regression
- It may sound impossible to solve for such an f over all possible functions, but the solution turns out to be surprisingly simple: f must be a natural cubic spline

Terminology

- First, some terminology:
- The parametric splines with fixed degrees of freedom that we have talked about so far are called regression splines
- A spline that passes through the points $\left\{x_{i}, y_{i}\right\}$ is called an interpolating spline, and is said to interpolate the points $\left\{x_{i}, y_{i}\right\}$
- A spline that describes and smooths noisy data by passing close to $\left\{x_{i}, y_{i}\right\}$ without the requirement of passing through them is called a smoothing spline

Natural cubic splines are the smoothest interpolators

Theorem: Out of all twice-differentiable functions passing through the points $\left\{x_{i}, y_{i}\right\}$, the one that minimizes

$$
\lambda \int\left\{f^{\prime \prime}(u)\right\}^{2} d u
$$

is a natural cubic spline with knots at every unique value of $\left\{x_{i}\right\}$

Natural cubic splines solve the nonparametric formulation

Theorem: Out of all twice-differentiable functions, the one that minimizes

$$
\sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda \int\left\{f^{\prime \prime}(u)\right\}^{2} d u
$$

is a natural cubic spline with knots at every unique value of $\left\{x_{i}\right\}$

Design matrix

Let $\left\{N_{j}\right\}_{j=1}^{n}$ denote the collection of natural cubic spline basis functions and \mathbf{N} denote the $n \times n$ design matrix consisting of the basis functions evaluated at the observed values:

- $N_{i j}=N_{j}\left(x_{i}\right)$
- $f(x)=\sum_{j=1}^{n} N_{j}(x) \beta_{j}$
- $f(\mathbf{x})=\mathbf{N} \boldsymbol{\beta}$

Solution

- The penalized objective function is therefore

$$
(\mathbf{y}-\mathbf{N} \boldsymbol{\beta})^{T}(\mathbf{y}-\mathbf{N} \boldsymbol{\beta})+\lambda \boldsymbol{\beta}^{T} \boldsymbol{\Omega} \boldsymbol{\beta}
$$

where $\boldsymbol{\Omega}_{j k}=\int N_{j}^{\prime \prime}(t) N_{k}^{\prime \prime}(t) d t$

- The solution is therefore

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{N}^{\prime} \mathbf{N}+\lambda \boldsymbol{\Omega}\right)^{-1} \mathbf{N}^{\prime} \mathbf{y}
$$

Smoothing splines are linear smoothers

- Note that

$$
\begin{aligned}
\hat{\mathbf{y}} & =\mathbf{N}\left(\mathbf{N}^{\prime} \mathbf{N}+\lambda \boldsymbol{\Omega}\right)^{-1} \mathbf{N}^{\prime} \mathbf{y} \\
& =\mathbf{S}_{\lambda} \mathbf{y}
\end{aligned}
$$

in other words, smoothing spline estimates are linear (nonparametric regression estimates with this property are said to be linear smoothers)

- As with ridge regression, this property provides us with a convenient way to calculate (or approximate) the leave-one-out cross-validation score as well as define the degrees of freedom of the estimate:

$$
\begin{aligned}
\mathrm{GCV} & =\frac{1}{n} \sum_{i}\left(\frac{y_{i}-\hat{y}_{i}}{1-\operatorname{tr}\left(\mathbf{S}_{\lambda}\right) / n}\right)^{2} \\
\mathrm{df}_{\lambda} & =\operatorname{tr}\left(\mathbf{S}_{\lambda}\right)
\end{aligned}
$$

CV, GCV for BMD example

Undersmoothing and oversmoothing of BMD data

Sampling distribution for smoothing splines

- The fact that smoothing splines are linear estimators greatly simplifies inference as well
- Theorem: Suppose that $y_{i} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$; then

$$
\hat{f}(\mathbf{x}) \sim N\left(\bar{f}(\mathbf{x}), \sigma^{2} \mathbf{S}_{\lambda} \mathbf{S}_{\lambda}\right),
$$

where $\bar{f}(\mathbf{x})=\mathbf{S}_{\lambda} f(\mathbf{x})$, the projection of $f(\mathbf{x})$ onto the space spanned by the natural cubic spline basis given the constraint on its integrated squared second derivative implied by λ

- In practice, we typically assume that $f(\mathbf{x})-\bar{f}(\mathbf{x})$ is small, and use the above relationship to construct confidence intervals for $f(\mathbf{x})$ despite the fact that technically, they are intervals for $\bar{f}(\mathbf{x})$

\mathbf{S}_{λ} versus \mathbf{H}

- Note that the smoothing matrix \mathbf{S}_{λ} is quite similar to the projection matrix \mathbf{H} from linear regression
- In particular, both \mathbf{S}_{λ} and \mathbf{H} are symmetric and positive semidefinite
- However, \mathbf{H} is idempotent (i.e., $\mathbf{H H}=\mathbf{H}$), whereas $\mathbf{S}_{\lambda} \mathbf{S}_{\lambda}$ is smaller than \mathbf{S}_{λ} (in the sense that $\mathbf{S}_{\lambda}-\mathbf{S}_{\lambda} \mathbf{S}_{\lambda}$ is positive semidefinite), because \mathbf{S}_{λ} introduces shrinkage, biasing estimates towards zero in order to reduce variance

Estimation of σ^{2}

- Theorem: For any linear smoother,

$$
\mathrm{E} \sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sigma^{2} \operatorname{tr}\left(\left(\mathbf{I}-\mathbf{S}_{\lambda}\right)^{T}\left(\mathbf{I}-\mathbf{S}_{\lambda}\right)\right)+\mathbf{b}^{T} \mathbf{b}
$$

where $\mathbf{b}=f(\mathbf{x})-\bar{f}(\mathbf{x})$

- Thus, assuming that the bias term is small, the following is a nearly unbiased estimator for σ^{2} :

$$
\hat{\sigma}^{2}=\frac{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-p^{*}}
$$

where $p^{*}=2 \operatorname{tr}\left(\mathbf{S}_{\lambda}\right)-\operatorname{tr}\left(\mathbf{S}_{\lambda} \mathbf{S}_{\lambda}\right)$

- The quantity p^{*} is known as the equivalent number of parameters, by analogy with linear regression, and differs slightly from the equivalent degrees of freedom

Pointwise confidence bands

