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Introduction

We are discussing ways to estimate the regression function f ,
where

E(y|x) = f(x)

One approach is of course to assume that f has a certain
shape, such as linear or quadratic, that can be estimated
parametrically

A better – though still parametric – approach is to use splines,
wherein the basis functions act locally, yet produce a smooth f̂
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Problems with knots

Fixed-df splines are very useful tools, but they do have one
shortcoming: the placement of knots

Choices regarding the number of knots and where they are
located are not particularly easy to make in a systematic and
data-driven manner

Furthermore, assuming that you place knots at quantiles or
equally spaced intervals, models will not be nested inside each
other, which complicates hypothesis testing
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Controlling smoothness with penalization

We can avoid the knot selection problem altogether by using
penalization to formulate the problem in a nonparametric way

Here, we directly solve for the function f that minimizes the
following objective function, a penalized version of the least
squares objective:

n∑
i=1

{yi − f(xi)}2 + λ

∫
{f ′′(u)}2du

The first term captures the fit to the data, while the second
penalizes curvature – note that for a line, f ′′(u) = 0 for all u
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Connection with splines

Here, λ is the smoothing parameter, and it controls the
tradeoff between the two terms:

λ = 0 imposes no restrictions and f will therefore interpolate
the data
λ =∞ renders curvature impossible, thereby returning us to
ordinary linear regression

It may sound impossible to solve for such an f over all
possible functions, but the solution turns out to be
surprisingly simple: f must be a natural cubic spline
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Terminology

First, some terminology:

The parametric splines with fixed degrees of freedom that we
have talked about so far are called regression splines
A spline that passes through the points {xi, yi} is called an
interpolating spline, and is said to interpolate the points
{xi, yi}
A spline that describes and smooths noisy data by passing
close to {xi, yi} without the requirement of passing through
them is called a smoothing spline
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Natural cubic splines are the smoothest interpolators

Theorem: Out of all twice-differentiable functions passing through
the points {xi, yi}, the one that minimizes

λ

∫
{f ′′(u)}2du

is a natural cubic spline with knots at every unique value of {xi}
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Natural cubic splines solve the nonparametric formulation

Theorem: Out of all twice-differentiable functions, the one that
minimizes

n∑
i=1

{yi − f(xi)}2 + λ

∫
{f ′′(u)}2du

is a natural cubic spline with knots at every unique value of {xi}
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Design matrix

Let {Nj}nj=1 denote the collection of natural cubic spline basis
functions and N denote the n× n design matrix consisting of the
basis functions evaluated at the observed values:

Nij = Nj(xi)

f(x) =
∑n

j=1Nj(x)βj

f(x) = Nβ
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Solution

The penalized objective function is therefore

(y −Nβ)T (y −Nβ) + λβTΩβ,

where Ωjk =
∫
N ′′j (t)N ′′k (t)dt

The solution is therefore

β̂ = (N′N + λΩ)−1N′y
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Smoothing splines are linear smoothers

Note that

ŷ = N(N′N + λΩ)−1N′y

= Sλy;

in other words, smoothing spline estimates are linear
(nonparametric regression estimates with this property are
said to be linear smoothers)
As with ridge regression, this property provides us with a
convenient way to calculate (or approximate) the
leave-one-out cross-validation score as well as define the
degrees of freedom of the estimate:

GCV =
1

n

∑
i

(
yi − ŷi

1− tr(Sλ)/n

)2

dfλ = tr(Sλ)
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CV, GCV for BMD example

Degrees of freedom

0.002

0.003

0.004

0.005

0.006

2 4 8 16 32 64

male

2 4 8 16 32 64

female

CV GCV
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Undersmoothing and oversmoothing of BMD data
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Sampling distribution for smoothing splines

The fact that smoothing splines are linear estimators greatly
simplifies inference as well

Theorem: Suppose that yi
iid∼ N(0, σ2); then

f̂(x) ∼ N
(
f̄(x), σ2SλSλ

)
,

where f̄(x) = Sλf(x), the projection of f(x) onto the space
spanned by the natural cubic spline basis given the constraint
on its integrated squared second derivative implied by λ

In practice, we typically assume that f(x)− f̄(x) is small, and
use the above relationship to construct confidence intervals
for f(x) despite the fact that technically, they are intervals for
f̄(x)
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Sλ versus H

Note that the smoothing matrix Sλ is quite similar to the
projection matrix H from linear regression

In particular, both Sλ and H are symmetric and positive
semidefinite

However, H is idempotent (i.e., HH = H), whereas SλSλ is
smaller than Sλ (in the sense that Sλ − SλSλ is positive
semidefinite), because Sλ introduces shrinkage, biasing
estimates towards zero in order to reduce variance
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Estimation of σ2

Theorem: For any linear smoother,

E
∑
i

(yi − ŷi)2 = σ2tr
(
(I− Sλ)T (I− Sλ)

)
+ bTb,

where b = f(x)− f̄(x)

Thus, assuming that the bias term is small, the following is a
nearly unbiased estimator for σ2:

σ̂2 =

∑
i(yi − ŷi)2

n− p∗
,

where p∗ = 2tr(Sλ)− tr(SλSλ)

The quantity p∗ is known as the equivalent number of
parameters, by analogy with linear regression, and differs
slightly from the equivalent degrees of freedom
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Pointwise confidence bands
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