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Pointwise inference

At any given target point x0, f̂ is a simple linear model

Thus,

Ef̂(x0) =
∑
i

li(x0)f(xi)

Varf̂(x0) = σ2
∑
i

li(x0)
2,

where σ2 = Var(y|x)

One method of constructing pointwise confidence intervals,
then, is via

f̂(x0)± zα/2σ
√∑

i

li(x0)2
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The bias problem

Recall, as with splines, that this is technically an interval for
f̄ = E(f̂), not for f

Also, our derivation of a nearly unbiased estimator for σ2 from
the spline lecture is valid for any linear estimator:

σ̂2 =

∑
i(yi − ŷi)2

n− 2ν + ν̃
,

where ν = tr(S) and ν̃ = tr(S′S)

As with the confidence interval problem, the bias problem is
difficult to resolve, so typically we assume that it is small and
essentially ignore it in practice
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Local likelihood

Suppose our outcome is binary; the notion of fitting local
least squares models is somewhat bothersome

A reasonable alternative would be to fit a local logistic
regression model instead

The principle is the same as loess, although instead of
minimizing the residual sum of squares, we maximize the log
likelihood of the logistic regression model, fitting a new pair of
regression coefficients at each target point x0
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Local logistic regression

For local logistic regression:

(α̂, β̂) = arg maxα,β
∑
i

Kλ(x0, xi)l(yi, π̂i),

where the contribution of observation i to the likelihood is once
again weighted by the kernel, and

π̂i =
eα+xβ

1 + eα+xβ

l(yi, π̂i) = yi log(π̂i) + (1− yi) log(1− π̂i)
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Fitting via IRLS

Fitting of logistic regression models already proceeds
according to an iteratively reweighted least squares (IRLS)
algorithm, which easily incorporates local weighting

The weight given to an observation i in a given iteration of
the IRLS algorithm is then a product of the weight coming
from the quadratic approximation to the likelihood and the
weight coming from the kernel (wi = w1iw2i)
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Cross-validation

Fitting may be straightforward, but cross-validation becomes
somewhat trickier

In particular, does it still make sense to cross-validate based
on squared error?

According to SAS, yes – SAS uses the exact same formulas for
GLM cross-validation as it does for least squares

Admittedly, however, this is a bit strange, as we are not fitting
parameters in terms of this criterion
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Cross-validation & deviance

A more natural criterion (used by gam and mgcv) is the
deviance (-2 times the log-likelihood plus a constant) or
average deviance:

CV = − 2

n

n∑
i=1

l(yi, π̂(−i))

In either case, the many simplifications and closed forms that
hold for cross-validation involving least squares regression and
squared error loss do not hold anymore

Nevertheless, GCV scores are still used based on the fact that,
empirically, they seem to work:

GCV =
1

n

(−2)
∑n

i=1 l(yi, π̂i)

(1− tr(S)/n)2
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GCV: Deviance vs LS

0.2 0.4 0.6 0.8 1.0

1.
19

1.
20

1.
21

1.
22

1.
23

1.
24

1.
25

1.
26

Span

C
V

GCV (Deviance)
AIC
GCV (Least squares)

The various criteria are very similar, and often select the same
smoothing parameter, but not always
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Scatterplot smoothers and GAMs

We will now discuss the implementation of local regression in
SAS and R

It is worth mentioning that both SAS (PROC LOESS) and R

(loess()) have simpler interfaces for calculating loess fits for
single variables where the outcome is normally distributed

These are valuable procedures/functions, but we will focus on
tools that are capable of fitting generalized additive models
based on local regression
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PROC GAM

Fitting additive local models is straightforward in SAS, in the
sense that you can use PROC GAM as with smoothing splines,
only replacing SPLINE with LOESS:

PROC GAM DATA=bmd;

MODEL Spnbmd = LOESS(Age) / METHOD=GCV;

RUN;

Again, by default, SAS uses 4 degrees of freedom for each
spline term; to have λ selected by GCV, specify METHOD=GCV:
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PROC GAM: Modeling details

The primary difference in using LOESS is that PROC GAM no
longer splits the term into linear and nonlinear components
(i.e., it behaves more like mgcv did, where we get a single test
of overall effect)

The other noticeable difference is that the smoothing
parameter for local regression is more interpretable
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PROC GAM: Further options

PROC GAM allows the usual choices of outcome distributions
and any combination of parametric, spline, and loess terms

For example, using the data from the CHD data set, we could
submit:

PROC GAM DATA=heart DESC;

CLASS Famhist;

MODEL Chd = PARAM(Famhist) SPLINE(Sbp) LOESS(Tobacco) /

METHOD=GCV DIST=BIN;

RUN;

Recall also that the smooth functions can be visualized using
the ODS system by adding PLOTS=COMPONENTS(CLM

ADDITIVE) to the PROC GAM statement

Patrick Breheny BST 764: Applied Statistical Modeling 13/25



Theory and inference
Local likelihood
Implementation

Multidimensional kernels

SAS
R

Heart study
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Heart study
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The gam package

In R, on the other hand, the mgcv package is spline-specific;
we must turn to a separate package to fit local regression
models: gam

A few comments up front:

The gam package is very similar to PROC GAM in that it allows
parametric, spline, or loess terms, and is entirely based on
backfitting
The main function in the gam package is gam(); note that
there is also a gam() function in the mgcv package – you
cannot load both packages during the same session and expect
them both to work
If the gam package can incorporate splines, why even talk
about mgcv? As we will see, one shortcoming of gam is that it
does not provide automatic selection of smoothing parameters
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The gam package

The basic syntax of model fitting is as follows:

fit <- gam(spnbmd~lo(age),data=bmd)

where lo controls the local polynomial which is fit to the data

Two important arguments to lo are span, which controls the
fraction of points in the smoothing window, and deg, which
controls the degree of the local fit:

fit <- gam(spnbmd~lo(age,span=.8,deg=2),data=bmd)

Default is linear fit with 50% of the points in the window

Patrick Breheny BST 764: Applied Statistical Modeling 17/25



Theory and inference
Local likelihood
Implementation

Multidimensional kernels

SAS
R

Selection of α

As mentioned earlier, the gam package has one notable
shortcoming: it does not provide automatic selection of the
smoothing parameter

The package does, however, provide both AIC and deviance to
assist you in manually choosing a smoothing parameter:

AIC <- numeric(length(Span))

for (i in 1:length(Span))

{

fit <- gam(spnbmd~lo(age,span=Span[i]),data=bmd)

AIC[i] <- fit$aic

}

Span[which.min(AIC)]
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Testing

summary.gam provides tests of nonlinearity, but not of overall
effect (or of linear terms)

To obtain them, you need to carry out the LRT manually:

fit <- gam(chd~lo(sbp)+lo(tobacco)+famhist,data=heart,family="binomial")

summary(fit)

fit0 <- gam(chd~lo(sbp)+famhist,data=heart,family="binomial")

anova(fit0,fit)

fit0 <- gam(chd~lo(sbp)+lo(tobacco),data=heart,family="binomial")

anova(fit0,fit)
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Global confidence bands

R has another package for local regression models called
locfit

One interesting feature it provides is the computation of
simultaneous confidence bands

Note the distinction: pointwise confidence intervals have
(1− α)% coverage only at a given x, while simultaneous
confidence bands have (1− α)% coverage for containing the
entire function f (technically f̄) over all x

The details are fairly complicated and involve Gaussian
processes, but it is worth looking at an example
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Pointwise CIs for the bone mineral density data
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Simultaneous CIs for the bone mineral density data
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Multivariate kernels

It is straightforward to extend the idea of local regression to
multiple dimensions – all that is needed is to define a
multivariate kernel:

Kλ(xi,x0) = K

(
‖xi − x0‖

λ

)
,

where ‖a‖ =
√∑

i a
2
i is the Euclidean distance

This can be further generalized by allowing different
bandwidths in each dimension:

Kλ(xi,x0) =

p∏
j=1

K

(
xij − x0j

λj

)
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Examples
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The curse of dimensionality?

Although one can easily write down high-dimensional kernels,
as we have remarked previously, the statistical properties of
the estimator tend to become poor as p grows larger

With adaptive kernel widths, however, the picture is not quite
so clear cut

Indeed, one can fit a model to the CHD data set with an
eight-dimensional kernel encompassing all the continuous
terms, and this model has a lower AIC than the additive model
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