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Local linear regression
Extensions and issues

Advantages of local linear fitting
Selection of the smoothing parameter

The problem with kernel weighted averages

Unfortunately, the Nadaraya-Watson kernel estimator suffers from
bias, both at the boundaries and in the interior when the xi’s are
not uniformly distributed:
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Loess

This arises due to the asymmetry effect of the kernel in these
regions

However, we can (up to first order) eliminate this problem by
fitting straight lines locally, instead of constants

In locally weighted regression, also known as lowess or loess,
we solve a separate weighted least squares problem at each
target point x0:

(α̂, β̂) = arg minα,β
∑
i

Kλ(x0, xi)(yi − α− xiβ)2

The estimate is then f̂(x0) = α̂+ x0β̂
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Loess is a linear smoother

Let X denote the n× 2 design matrix with ith row (1, xi),
and W denote the n× n diagonal matrix with ith diagonal
element wi(x0) = Kλ(x0, xi)

Then

f̂(x0) = xTi [X
′WX]−1X′Wy

=
∑
i

li(x0)yi,

where it is important to keep in mind that W depends
implicitly on x0

Note that loess is therefore a linear smoother, in the sense
that ŷ = Sy
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Effective kernels

Furthermore, the linear smoother in local linear regression is
performing weighted local averaging with the weights,
determined by {li(x0)}, forming an effective kernel (also
called the equivalent kernel)

Before the development of loess, a fair amount of research
focused on deriving adaptive modifications to kernels in order
to alleviate the bias that we previously discussed

However, local linear regression automatically modifies the
kernel in such a way that this bias is largely eliminated, a
phenomenon known as automatic kernel carpentry
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Automatic kernel carpentry
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The smoothing matrix

Furthermore, since loess is a linear smoother, it is easy to
carry out cross-validation and generalized cross-validation:

CV =
1

n

∑
i

(
yi − ŷi

1− li(xi)

)2

GCV =
1

n

∑
i

(
yi − ŷi

1− tr(S)/n

)2

,

where, as we have seen before, we can obtain leave-one-out
cross-validation results without refitting our model

Also as before, tr(S) acts as the effective degrees of freedom
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Higher order polynomials
Window widths and the smoothing parameter

Bias due to local linear fitting
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Local linear versus local quadratic fitting

As the figure on the previous slide indicates, local linear
models tend to be biased in regions of high curvature, a
phenomenon referred to as “trimming the hills and filling in
the valleys”

Higher-order local polynomials correct for this bias, but at the
expense of increased variability

The conventional wisdom on the subject of local linear versus
local quadratic fitting says that:

Local linear fits tend to be superior at the boundaries
Local quadratic fits tend to be superior in the interior
Local fitting to higher order polynomials is possible in
principle, but rarely necessary in practice
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Constant vs. adaptive λ

Our discussion of kernels in the previous lecture featured a
constant half-width λ

An alternative approach, and the one used by default in both
SAS and R, is to allow λ to change with x0 so that the
number of points inside (x0 − λ, x0 + λ) remains constant

The smoothing parameter in loess is therefore readily
interpretable: it is the fraction of the sample size used in
constructing the local fit at any point x0
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Selection of smoothing parameter
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Effective degrees of freedom versus span

Dots indicate optimal smoothing, as chosen by GCV :
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Optimal fits for the bone mineral density data
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Bone mineral density data – males versus females
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