Local regression

Patrick Breheny

October 25

Advantages of local linear fitting Selection of the smoothing parameter

The problem with kernel weighted averages

Unfortunately, the Nadaraya-Watson kernel estimator suffers from bias, both at the boundaries and in the interior when the x_i 's are not uniformly distributed:

- This arises due to the asymmetry effect of the kernel in these regions
- However, we can (up to first order) eliminate this problem by fitting straight lines locally, instead of constants
- In locally weighted regression, also known as *lowess* or *loess*, we solve a separate weighted least squares problem at each target point x₀:

$$(\hat{\alpha}, \hat{\beta}) = \arg \min_{\alpha, \beta} \sum_{i} K_{\lambda}(x_0, x_i)(y_i - \alpha - x_i \beta)^2$$

• The estimate is then $\hat{f}(x_0) = \hat{\alpha} + x_0 \hat{\beta}$

Advantages of local linear fitting Selection of the smoothing parameter

Loess is a linear smoother

• Let X denote the $n \times 2$ design matrix with *i*th row $(1, x_i)$, and W denote the $n \times n$ diagonal matrix with *i*th diagonal element $w_i(x_0) = K_{\lambda}(x_0, x_i)$

Then

$$\hat{f}(x_0) = \mathbf{x}_i^T [\mathbf{X}' \mathbf{W} \mathbf{X}]^{-1} \mathbf{X}' \mathbf{W} \mathbf{y}$$
$$= \sum_i l_i(x_0) y_i,$$

where it is important to keep in mind that ${\bf W}$ depends implicitly on x_0

• Note that loess is therefore a linear smoother, in the sense that $\hat{\mathbf{y}} = \mathbf{S}\mathbf{y}$

Effective kernels

- Furthermore, the linear smoother in local linear regression is performing weighted local averaging with the weights, determined by $\{l_i(x_0)\}$, forming an *effective kernel* (also called the *equivalent kernel*)
- Before the development of loess, a fair amount of research focused on deriving adaptive modifications to kernels in order to alleviate the bias that we previously discussed
- However, local linear regression automatically modifies the kernel in such a way that this bias is largely eliminated, a phenomenon known as *automatic kernel carpentry*

Advantages of local linear fitting Selection of the smoothing parameter

Automatic kernel carpentry

,

The smoothing matrix

• Furthermore, since loess is a linear smoother, it is easy to carry out cross-validation and generalized cross-validation:

$$CV = \frac{1}{n} \sum_{i} \left(\frac{y_i - \hat{y}_i}{1 - l_i(x_i)} \right)^2$$
$$GCV = \frac{1}{n} \sum_{i} \left(\frac{y_i - \hat{y}_i}{1 - tr(\mathbf{S})/n} \right)^2$$

where, as we have seen before, we can obtain leave-one-out cross-validation results without refitting our model

• Also as before, $tr(\mathbf{S})$ acts as the effective degrees of freedom

Higher order polynomials Window widths and the smoothing parameter

Bias due to local linear fitting

Higher order polynomials Window widths and the smoothing parameter

Local linear versus local quadratic fitting

- As the figure on the previous slide indicates, local linear models tend to be biased in regions of high curvature, a phenomenon referred to as "trimming the hills and filling in the valleys"
- Higher-order local polynomials correct for this bias, but at the expense of increased variability
- The conventional wisdom on the subject of local linear versus local quadratic fitting says that:
 - Local linear fits tend to be superior at the boundaries
 - Local quadratic fits tend to be superior in the interior
 - Local fitting to higher order polynomials is possible in principle, but rarely necessary in practice

Constant vs. adaptive λ

- \bullet Our discussion of kernels in the previous lecture featured a constant half-width λ
- An alternative approach, and the one used by default in both SAS and R, is to allow λ to change with \mathbf{x}_0 so that the number of points inside $(x_0 \lambda, x_0 + \lambda)$ remains constant
- The smoothing parameter in loess is therefore readily interpretable: it is the fraction of the sample size used in constructing the local fit at any point x_0

Local linear regression

Higher order polynomials Window widths and the smoothing parameter

Selection of smoothing parameter

span

ocal linear regression Higher order polynomials Extensions and issues Window widths and the smoothing parameter

Effective degrees of freedom versus span

Dots indicate optimal smoothing, as chosen by GCV:

Span

Higher order polynomials Window widths and the smoothing parameter

Optimal fits for the bone mineral density data

Age

Higher order polynomials Window widths and the smoothing parameter

Bone mineral density data – males versus females

Age