Kernels

Patrick Breheny

October 20

Introduction

- The previous approach to nonparametric regression, splines, was based on expanding a continuous variable into a series of basis functions, each with localized effects, and then fitting this expanded model
- We turn our attention now to kernel methods
- Like splines, they are used to estimate $\mathrm{E}(y \mid x)=f(x)$ in a nonparametric way, but they do so by employing a very different strategy

Main idea

- Rather than expand the problem into a large multivariate problem, the idea behind kernels is to fit a very simple model (e.g., simple linear regression), but to fit a different simple model at every point x_{0}
- This is done by using only those observations close to x_{0} to fit the model
- This infinite collection of simple models adds up to allow tremendous flexibility in modeling f

The local average

The simplest local model is the local average:

$$
\hat{f}\left(x_{0}\right)=\frac{\sum_{i} y_{i} I\left(\left|x_{i}-x_{0}\right|<\lambda\right)}{\sum_{i} I\left(\left|x_{i}-x_{0}\right|<\lambda\right)}
$$

Females

Males

Problems with the local average

- Note that the set of points $\left\{x_{i}\right\}$ within λ of x_{0} changes in an abrupt fashion, leading to a discontinuous estimate of f
- This is unrealistic and unnecessary
- Rather than assign all the points in the sliding window equal weight, we can construct a weighting function that makes the transition to zero weight smoothly as x gets further away from x_{0}

The Nadaraya-Watson estimator

- Specifically, consider estimators of the following form, known as the Nadaraya-Watson kernel estimator:

$$
\hat{f}\left(x_{0}\right)=\frac{\sum_{i} K_{\lambda}\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i} K_{\lambda}\left(x_{0}, x_{i}\right)}
$$

where

- The function K is called the kernel, and it controls the weight given to the observations $\left\{x_{i}\right\}$ at each point x_{0} based on their proximity
- λ, which controls the size of the neighborhood around x_{0}, is the smoothing parameter
- Note that if K is continuous, then so is \hat{f}

Kernels

- We will consider kernels of the form

$$
K_{\lambda}\left(x_{i}, x_{0}\right)=K\left(\frac{x_{i}-x_{0}}{\lambda}\right)
$$

- To be considered a kernel, a function must also be symmetric about 0

Gaussian kernel: Illustration

An example of a kernel function is the Gaussian density

Other kernels

- One drawback of the Gaussian kernel is that its support runs over the entire real line; computationally it is desirable that a kernel have compact support
- Two popular compact kernels are the Epanechnikov kernel:

$$
K(u)= \begin{cases}\frac{3}{4}\left(1-u^{2}\right) & \text { if }|u| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and the tri-cube kernel:

$$
K(u)= \begin{cases}\left(1-|u|^{3}\right)^{3} & \text { if }|u| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Kernels: illustration

Generally, estimates are usually quite robust to choice of kernel

Effect of changing bandwidth

Growth data, $\lambda=\{0.25,2,10\}$, Epanechnikov kernel:

Effect of changing bandwidth

Growth data, $\lambda=\{0.125,1,5\}$, Gaussian kernel:

