
BST 764: Applied Statistical Modeling
Breheny

Assignment 4: Classification and regression trees

Due: Tuesday, November 22

Mathematical concepts and derivations

1. Consider the problem of solving for a regression tree split in a single dimension. Suppose x
and y are both continuous, and all of their values are unique.

(a) How many different split values {sj} must be evaluated in order to consider all possible
splits of the form x ≤ sj?

(b) For each of the split values in part (a), let

uj =
∑

i:xi≤sj

yi

vj =
∑

i:xi≤sj

y2i

y+ =
∑
i

yi

y2+ =
∑
i

y2i .

Note that once you have obtained {uj} and {vj}, calculating y+ and y2+ is trivial. Derive
RSSj in terms of these four quantities, where

RSSj =
∑

i:xi≤sj

(yi − ĉ1)2 +
∑

i:xi>sj

(yi − ĉ2)2.

Your final answer should be a simple expression of uj , vj , y+, and y2+ with no summa-
tions or other derived quantities (like ĉ) in it. (Note that if the {xi} values have been
sorted, calculating the entire list of {uj}, {vj}, y+, and y2+ can be done with the same
computational burden as finding the variance of y).

(c) Linear regression (provided that the design matrix is of full rank), has the nice property
that if you consider RSS as a function of β, any local minimum is the one unique global
minimum. Do regression trees have this property? In other words, if you were to plot
RSSj versus sj , are you guaranteed to have exactly one local minimum? If “yes”, prove
it1; if “no”, give a counterexample.

1For the proof, you may consider the simpler special case where {xi} = 1, 2, 3, 4
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Simulation

2. Conduct a simulation study comparing linear regression to regression trees. Generate data
according to the following setup: For i = 1, 2, . . . , 100, Let xi follow a uniform distribution
and let yi = xi + εi, where εi follows a standard normal distribution. You may use either (or
both) tree-based algorithms we discussed in class (rpart or party).

To evaluate the two modeling approaches, generate test data sets with 1,000 observations from
the same mechanism as above. For a criterion, use the mean squared prediction error minus
the irreducible error (i.e., the variance of y given x). This quantity is called the model error.
Comment on which approach performs better and give an explanation for why it performs
better.

3. Repeat problem 2 with the following data-generating mechanism: Let x1i, x2i, and x3i follow
independent random Bernoulli distributions with p = 0.5, and let yi = x1ix2i + x2ix3i + εi.
Again, comment on the model error, and if your results differ from those of problem, comment
on the reasons why.

4. Repeat problem 3, only compare the two tree-based approaches (rpart and party), and
use the following data-generating mechanism: Let x1i and x2i follow independent random
Bernoulli distributions with p = 0.5, and let yi = x1i(1− x2i) + (1− x1i)x2i + εi. In words, y
has a higher expected value if x1 happens or x2 happens, but not if they both happen. Again,
comment on the model error and explain why the approaches performed as they did.

Application

5. Revisit our WHO data from earlier in the semester concerning the prediction of pneumonia
based on clinical signs. Analyze the data using a tree-based method and comment on your
results. In particular, comment on any statistical decisions you made during the analysis
(e.g., using party or rpart, treating the outcome as categorical or continuous, etc.), as well
as on the medical/scientific interpretation of your model/algorithm.

You may face the dilemma that the optimal model from a statistical perspective is too large
to be easily interpreted. If you do, comment on whether it is possible to simplify the model,
and if so, at what cost to its predictive accuracy?
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