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Abstract

We consider approaches for improving the efficiency of algorithms for fitting nonconvex penalized

regression models such as SCAD and MCP in high dimensions. In particular, we develop rules for

discarding variables during cyclic coordinate descent. This dimension reduction leads to a substantial

improvement in the speed of these algorithms for high-dimensional problems. The rules we propose

here eliminate a substantial fraction of the variables from the coordinate descent algorithm. Violations

are quite rare, especially in the locally convex region of the solution path, and furthermore, may be

easily detected and corrected by checking the Karush-Kuhn-Tucker conditions. We extend these rules

to generalized linear models, as well as to other nonconvex penalties such as the `2-stabilized Mnet

penalty, group MCP, and group SCAD. We explore three variants of the coordinate decent algorithm

that incorporate these rules and study the efficiency of these algorithms in fitting models to both

simulated data and on real data from a genome-wide association study.

Keywords: Coordinate descent algorithms, Local convexity, Nonconvex penalties, Dimension reduction.

1 Introduction

Consider the linear regression model

y = Xβ + ε, (1)

where y = (y1, · · · , yn)′ is the vector of n response variables, X = (x1, . . . ,xp) is the n× p design matrix

with the jth column xj = (x1j , . . . , xnj)
′, β = (β1, . . . , βp)

′ is the vector of regression coefficients and

ε = (ε1, · · · , εn)′ is the vector of random errors. We assume that the responses and covariates are centered

so that the intercept term is zero. We are interested in estimating the vector of regression coefficients β.

Penalized regression methods accomplish this by minimizing an objective function Q that is composed

of the sum of squared residuals plus a penalty. The penalized least squares estimator is defined as the

minimizer of

Qλ,γ(β) =
1

2n
‖y −Xβ‖22 +

p∑
j=1

Jλ,γ(|βj |), (2)

where Jλ,γ(·) is a penalty function indexed by a regularization parameter λ that controls the balance

between the fit of the model and the penalty, and the penalty function may depend on one or more tuning

parameters γ.
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Here we focus on optimization algorithms for penalized regression methods. There has been much work

on developing efficient algorithms for many problems with various penalties, including Efron et al. (2004),

Friedman et al. (2007), and Wu and Lange (2008) for the least absolute selection operator (LASSO), and

Kim et al. (2008), Zou and Li (2008), and Breheny and Huang (2011) for nonconvex penalties such as

smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP). Recently, several

authors have investigated rules for discarding variables during certain steps of the above algorithms,

thereby saving computational time through dimension reduction.

For the LASSO, El Ghaoui et al. (2011) proposed the basic SAFE rule discards the jth variable if

|x′jy/n| < λ− 1

n
‖xj‖2‖y‖2(λmax − λ)/λmax, (3)

where λmax = maxj |x′jy/n| is the smallest tuning parameter value for which all estimated coefficients are

zero. They proved that the estimated coefficient for any variable satisfying the basic SAFE rule (3) must

be zero in the solution at λ. Tibshirani et al. (2012) proposed the basic strong rule by modifying the basic

SAFE rule (3). For a standardized design matrix (‖xj‖2/
√
n = 1 for all j), we have ‖y‖2/

√
n > λmax by

the Cauchy-Schwarz inequality and therefore 2λ − λmax is an upper bound of the quantity on the right

hand side of (3). The strong rule therefore discards the jth variable if

|x′jy/n| < 2λ− λmax. (4)

Being an upper bound of the SAFE rule, the strong rule (4) discards more variables than the SAFE

rule. Unlike the SAFE rule, however, it is possible for the strong rule to be violated. Because strong

rules can mistakenly discard active variables (i.e., variables whose solution is nonzero for that value of

λ), Tibshirani et al. (2012) proposed checking the discarded variables against the Karush-Kuhn-Tucker

(KKT) conditions to correct for any violations that may have occurred during the optimization.

These basic rules are most useful at large values of λ and rarely eliminate variables at smaller λ

values. This is unfortunate from an algorithmic perspective, since the majority of time required to fit

a regularization path is spent during optimization for the small λ values. To overcome this drawback,

Tibshirani et al. (2012) proposed sequential strong rules. For a decreasing sequence of tuning parameter

λ1 ≥ λ2 ≥ · · · ≥ λm, the sequential strong rule discards the jth variable from the optimization problem

at λk if

|x′jrk−1/n| < 2λk − λk−1, (5)

where rk−1 = y − Xβ̂(λk−1) is the vector of residuals at λk−1. Unlike the basic rules, the sequential

strong rule discards a large proportion of inactive variables at all values of λ. In addition, the rule is

rarely violated, and is therefore unlikely to discard active variables by mistake.

In this paper, we investigate sequential strong rules for discarding variables in penalized regression

with nonconvex penalties, as well as strategies for incorporating these rules into coordinate descent
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algorithms for fitting these models. In addition, we derive rules for discarding variables in various related

problems with nonconvex penalties, such generalized linear models, `2-stabilized penalties (the “Mnet”

estimator), and grouped penalties. We provide a publicly available implementation of these algorithms

in the updated ncvreg package (available at http://cran.r-project.org), which was used to fit all

the models in this paper.

2 Strong rules in nonconvex penalized regression

The basic idea of the sequential strong rule (Tibshirani et al., 2012) is that the solution path β̂(λ) is a

continuous function; furthermore, one can obtain an approximate bound on how fast the solution path can

change as a function of lambda. Thus, when solving for β̂ at λk−1 and then again at λk, we can exclude

certain variables from the optimization procedure because they aren’t close enough to the threshold for

inclusion in the model to reach that threshold in the distance between λk−1 and λk. The effect is that the

dimension of the optimization problem is reduced – instead of cycling over all variables, the estimation

procedure needs only to cycle over a much smaller set of variables capable of entering the model at λk.

The bound investigated by (Tibshirani et al., 2012) is given by

|cj(λ)− cj(λ̃)| ≤ |λ− λ̃|, for any λ and λ̃, (6)

where cj(λ) = x′jr(λ)/n is the correlation1 between variable j and the residual at λ. This condition

is equivalent to cj(λ) being continuous everywhere, differentiable almost everywhere, and satisfying

|∇cj(λ)| ≤ 1 wherever this derivative exists. Tibshirani et al. called condition (6) the unit slope bound. If

condition (6) holds, then for any variable j satisfying the sequential strong rule (5), we have cj(λk) < λk,

and thus, β̂j(λk) = 0 by the KKT conditions of the LASSO.

In this section, we examine whether a variation of condition (6) holds for the MCP and SCAD

penalties, and use a modified version of (6) to develop strong rules for those nonconvex penalties. Also,

we provide numerical examples to illustrate the application of the strong rules on a simulated data set.

Lastly, we note that unlike the LASSO case, for nonconvex penalties the function cj(λ) is not guaranteed

to be continuous; we explore the consequences of this fact in Section 2.4.

1Strictly speaking, cj(λ) is not a correlation, since r is not standardized, and thus only proportional to the correlation

between xj and r. However, the term is widely used; see, e.g., Efron et al. (2004).
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2.1 MCP

Zhang (2010) proposed the MCP which is defined as

Jλ,γ(t) =

−t
2/(2γ) + λt, if t ≤ γλ,

γλ2/2, if t > γλ.

for λ ≥ 0 and γ > 1. We begin by noting the KKT conditions for the penalized problem (2),

x′jr/n = ∇Jλ(|β̂j |) for all j ∈ A,

|x′jr/n| < λ for all j /∈ A
(7)

where A = {j : β̂j 6= 0} is the active set.

Variables in A are continuously changing as a function of λ, but many variables in Ac remain zero

from one λ value to the next. Our aim, then, is to develop a screening rule to can discard the variables in

the inactive set Ac that are likely to remain zero. In high dimensions, doing so should yield substantial

computational savings. From the KKT conditions (7), we have the form of cj(λ),

cj(λ) =


0, if |β̂j | > γλ,

−β̂j/γ + λsign(β̂j) if |β̂j | ≤ γλ, β̂j 6= 0

x′jXA(X′AXA)−1∇Jλ(|β̂A|) + (Const), if β̂j = 0,

(8)

where βA = (βj , j ∈ A) and XA = (xj , j ∈ A) denote the subvector and submatrix of β and X,

respectively, and (Const) stands for constant terms not depending on λ. Unlike the LASSO, the above

expression for cj(λ) does not permit a closed-form expression for ∇cj(λ) for variables in the active set.

Hence, we investigate an approximation for ∇cj(λ) based on an orthogonal design matrix. In this case,

the coefficient estimates have closed form solution β̂j = γ
γ−1 sign(zj)(|zj | − λ)+, where zj = x′jy/n is the

ordinary least squares estimator, and the second term of (8) is cj(λ) = sign(zj)
{
λ− 1

γ−1 (|zj | − λ)+

}
.

This suggests the bound |∇cj(λ)| ≤ 1 + 1/(γ − 1). This slope bound is larger than the corresponding

bound for the LASSO, as the nonconvexity of MCP allows the solution path – and thus, cj(λ) – to change

more rapidly as a function of λ than it does for LASSO. Note that in the limiting case γ →∞, MCP is

equal to the lasso penalty, and the bounds coincide. Conversely, as γ → 1, MCP is equivalent to hard

thresholding. The bound diverges in this case, and there is no limit to the rate at which the solution

path may change and no possibility of discarding variables based on this argument.

As in the LASSO case, a slope bound for variables in the active set does not necessarily extend to

variables in the inactive set. Nevertheless, it is reasonable to expect that the correlation with the residuals

is changing more rapidly for variables in the active set than variables in the inactive set. This line of

thinking that allows us to establish an explicit rule for screening predictors during optimization.
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If, for j = 1, . . . , p, the bound

|cj(λ)− cj(λ̃)| ≤ γ

γ − 1
|λ− λ̃|, for any λ and λ̃, (9)

holds, we can obtain the following rule, which we call the (sequential) strong rule for MCP:

|x′jrk−1/n| < λk +
γ

γ − 1
(λk − λk−1). (10)

Note that, for any variable j satisfying (9) and (10), we have

|cj(λk)| ≤ |cj(λk)− cj(λk−1)|+ |cj(λk−1)|

<
γ

γ − 1
(λk−1 − λk) + λk +

γ

γ − 1
(λk − λk−1)

= λk,

and thus, β̂j(λk) = 0.

Indeed, as we shall see, the heuristic argument that residual correlation changes more rapidly in the

active set than the inactive set holds up quite well in practice. Nevertheless, violations are possible, and

thus it is necessary to check the discarded variables against the KKT conditions (7) as a final step in the

optimization algorithm.

2.2 SCAD

The SCAD penalty proposed by Fan and Li (2001) is defined as

Jλ,γ(t) =


λt, if t ≤ λ,

{γλ(t− λ)− (t2 − λ2)/2}/(γ − 1), if t ≤ γλ,

(γ − 1)λ2/2 + λ2, if t > γλ.

for λ ≥ 0 and γ > 2. From the KKT conditions (7), we have

cj(λ) =



0, if |β̂j | > γλ

(γλsign(β̂j)− β̂j)/(γ − 1), if λ < |β̂j | ≤ γλ

λsign(β̂j), if |β̂j | ≤ λ, β̂j 6= 0

x′jXA(XT
AXA)−1∇Jλ(|β̂A|) + (Const), if β̂j = 0,

where (Const) stands for constant terms not depending on λ. For SCAD, the orthogonal design solution

is β̂j = sign(zj)(
γ−1
γ−2 ){|zj | − λγ/(γ − 1)}+. Applying the same reasoning as in Section 2.1, we obtain the

approximate slope bound |∇cj(λ)| ≤ 1 + 2/(γ − 2) and the sequential strong rule for SCAD

|x′jrk−1/n| < λk +
γ

γ − 2
(λk − λk−1). (11)
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Like MCP, the SCAD solution path is capable of changing more rapidly with respect to λ than LASSO,

and thus requires a larger bound for its strong rule.

2.3 Numerical illustrations

We now provide an illustration of the how the strong rules perform using a simulated example. The

design of the simulation, which we also use for the simulation study in Section 4, is as follows. All

covariates marginally follow standard Gaussian distributions, with a common correlation ρ between any

two covariates. The response variable y is generated from the linear model (1) with errors drawn from

the standard Gaussian distribution. For each independently generated data set, we set n = 200 and

p = 2, 000, with 20 nonzero coefficients set to be ±1 for linear regression and the remaining 1, 980

coefficients equal to zero. Throughout this paper, we fix γ = 3 for MCP and γ = 4 for SCAD, roughly in

line with recommendations suggested in Fan and Li (2001) and Zhang (2010), respectively.
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Figure 1: Application of the strong rules (5, 10, and 11) for two simulated data sets, one with ρ = 0

(top panel) and the other with ρ = 0.5 (bottom panel). The solid line is the number of variables left

after filtering by strong rules and the dotted line is the actual number of active variables for each λ. The

region of the coefficient path that does not satisfy local convexity is shaded gray. Vertical lines are drawn

for any value of λ at which a violation of the strong rules occurred.

Figure 1 displays the performance of the strong rules for LASSO, MCP, and SCAD on two simulated
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data sets, one with uncorrelated covariates, the other with a pairwise correlation of ρ = 0.5. The figure

displays the number of variables remaining (i.e., p minus the number of discarded variables) after applying

the strong rules for a decreasing sequence of λ values, alongside the actual number of nonzero coefficients

in the model for those λ values. Vertical lines are drawn for each value of λ for which a violation of the

strong rules occurred. So in this example, there were no violations for any of the methods when ρ = 0,

but we observe 3 violations for MCP and 7 violations for SCAD when ρ = 0.5.

The strong rules perform remarkably well here, especially for ρ = 0. The vast majority of the p = 2, 000

variables are discarded by the strong rules. In fact, nearly all of the variables that should be discarded

are discarded, across the entire path of λ values. With so many variables discarded by the strong rules,

it is surprising how rare it is for a variable to be erroneously discarded.

Nevertheless, violations do occur, and are more common for nonconvex penalties than for the LASSO,

as we discuss in the next section. Violations are important, but not fatal – an algorithm based on

dimension reduction through discarding variables can always check the validity of the dimension reduction

by inspecting the KKT conditions for β̂(λ) upon convergence for each value of λ, and include any variables

that were erroneously discarded. In this manner, we ensure that all solutions β̂ returned by the algorithm

are indeed a (local) minimum of the objective function. Details for constructing algorithms based on

strong rules are given in Section 5.

Although none occurred in this example, violations are also possible for the lasso, and a similar KKT-

checking step is required in the LASSO algorithm proposed by Tibshirani et al. (2012). A systematic

numerical study of the frequency of violations for MCP and SCAD is provided in Section 4.

2.4 Local convexity

Unlike the LASSO solution path, for nonconvex penalties β̂ is not necessarily a continuous function of λ.

It is possible for the objective function to possess multiple local minima, and for β̂(λ) to “jump” from

one local minimum to a different local minimum between λk−1 and λk. Such a discontinuity undermines

the entire premise of strong rules.

It is possible, however, to characterize the regions of the solution path where such discontinuities may

and may not occur. The portion of the solution path guaranteed to be continuous was referred to in

Breheny and Huang (2011) as the locally convex region. Letting A(λ) = {j : β̂j(λ) 6= 0} denote the

active set of variables at λ, and τmin(λ) denote the minimum eigenvalue of X′A(λ)XA(λ)/n, the solution

path is said to be locally convex at λ if γ > 1/τmin(λ) for MCP, and γ > 1 + 1/τmin(λ) for SCAD.

Correspondingly, the locally convex region is defined as (λmax, λ
∗), where λ∗ is the first (i.e., largest)

value of λ for which the solution is no longer locally convex. As demonstrated in Breheny and Huang

(2011), coefficient paths for nonconvex penalties are smooth and well behaved in the locally convex region,
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but may be discontinuous and erratic in the non-locally convex region.

We would therefore expect strong rules to be less reliable in the non-locally convex region, and this is

precisely what we see in Figure 1, where all the observed violations occur in the non-locally convex region.

Indeed, although this is not apparent in the figure, several violations tend to occur simultaneously when

a discontinuity arises in the solution path. For example, at λ = 0.0745, there were 11 variables excluded

by the strong rules that were discovered during the KKT check to be nonzero at the new local minimum

β̂(λ).

The presence of discontinuities in the solution paths for nonconvex penalties places an inherent limita-

tion on the use of sequential rules to improve optimization efficiency during model fitting. Nevertheless, as

we will see, even in highly correlated settings, only a small number of λ values experience violations, and

strong rules may be profitably incorporated into optimization algorithms for nonconvex penalized models

despite these violations, solving for the solution path β̂(λ) substantially faster than cyclic coordinate

descent approaches.

3 Extensions to other nonconvex penalized models

3.1 `2-stabilization

To stabilize the solution path for nonconvex penalties, especially in p > n problems with highly correlated

predictors, Huang et al. (2013) proposed the Mnet estimator, which is defined as the minimizer of

Qλ,γ(β) =
1

2n
‖y −Xβ‖22 +

p∑
j=1

Jλ1,γ(|βj |) +
1

2
λ2

p∑
j=1

β2
j , (12)

where Jλ1,γ(·) is the MCP. The logic behind the estimator is the same as that of the elastic net (or Enet,

Zou and Hastie, 2005), but with MCP replacing the LASSO in the penalty. Let

X̃ =

 X
√
nλ2 Ip

 , ỹ =

 y

0p

 ,

where Ip is the p×p identity matrix and 0p is the p-dimensional vector whose all elements are zero. Then

the criterion (12) may be rewritten as

1

2n
‖ỹ − X̃β‖22 +

p∑
j=1

Jλ1,γ(|βj |). (13)

Hence, we can directly apply the sequential strong rule (10) to discard variables. Reparameterizing the

problem in terms of λ1 = αλ and λ2 = (1− α)λ, the strong rule for Mnet becomes∣∣∣−x′jrk−1/n+ λk(1− α)β̂j(λk−1)
∣∣∣ < α

{
λk +

γ

γ − 1
(λk − λk−1)

}
,
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since x̃′jỹ = x′jy and x̃′jX̃β̂ = x′jXβ̂ + nλ(1 − α)β̂j . For inactive variables (β̂j = 0), the above rule

reduces to ∣∣x′jrk−1/n∣∣ < α

{
λk +

γ

γ − 1
(λk − λk−1)

}
. (14)
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Figure 2: Application of strong rule (14) to a simulated data set with ρ = 0.5 for different values of α.

As in Figure 1, the solid line is the number of variables left after filtering by strong rules, the dotted line

is the actual number of active variables for each λ, the region of the coefficient path that does not satisfy

local convexity is shaded gray, and vertical lines are drawn for any value of λ for which a violation of the

strong rule occurred.

Figure 2 illustrates the application of strong rules to the Mnet estimator for a simulated data set with

ρ = 0.5 as we vary the parameter α that controls the MCP/`2 balance in the penalty. As in Section 2.4,

one may characterize the locally convex region; for the Mnet estimator, this consists of the values of λ

satisfying γ > 1/{τmin(λ) + (1− α)λ}.

From Figure 2, we can see that as we decrease α and thereby increase the `2 proportion of the penalty,

the locally convex region is extended, the model becomes less sparse, and fewer issues with discontinuities

and strong rule violations arise. Indeed, at α = 0.1, the objective function is locally convex over the entire

solution path and no violations occurred. For all α values, the strong rules were successful in discarding

a large proportion of the inactive variables.

3.2 Generalized linear models

Suppose that the distribution of y|X falls within the framework of the generalized linear model (GLM),

with link function ηi = g(µi), where µi = E(yi|xi1, . . . , xip) and

η = Xβ = β0 + x1β1 + · · ·+ xpβp, (15)
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where η = (η1, . . . , ηn)′ ∈ Rn is the vector of linear predictors. The nonconvex penalized estimator for a

GLM is defined as the minimizer of the negative log-likelihood plus the penalty term. For example, for

logistic regression,

− 1

n

n∑
i=1

{yi logµi + (1− yi) log(1− µi)}+

p∑
j=1

Jλ,γ(|βj |). (16)

The extension of strong rules to GLMs is straightforward. Indeed, both the KKT conditions (7) and

the strong rules themselves (10, 11) are the same as in the linear case, although the residual vector must

now incorporate the link function: r = y − µ(η). For example, µ(η) = exp(η)/(1 + exp(η)) for logistic

regression and µ(η) = exp(η) for Poisson regression.

3.3 Nonconvex group penalized estimation

Nonconvex penalties have also been proposed in the context of group variable selection. Suppose that

the covariates may be grouped into G groups, with the grouping structure non-overlapping and known

in advance:

y =

G∑
g=1

Xgβg + ε. (17)

where Xg is the n × pg design matrix corresponding to the gth group and βg ∈ Rpg is the vector

of corresponding regression coefficients of the gth group. The nonconvex group penalized estimator is

defined as the minimizer of

Qλ,γ(β) =
1

2n
‖y −

G∑
g=1

Xgβg‖22 +

G∑
g=1

Jλg,γ(‖βg‖2), (18)

where Jλg,γ(·) is a penalty function applied to the `2-norm of βg. It is common practice (Yuan and Lin,

2006; Simon and Tibshirani, 2011) to adjust the regularization parameter for each group using λg = λ
√
pg

to account for differences in group size. By the KKT conditions, the local minimizer β̂ ∈ Rp satisfies

X′gr/n = λ
√
pgβ̂g/‖β̂g‖2, g ∈ A,∣∣∣∣X′gr/n∣∣∣∣2 < λ
√
pg, g ∈ Ac,

(19)

where A = {g : ‖β̂g‖2 6= 0} is the index set of nonzero groups. Similar to standard variable selection, we

can derive strong rules to discard the gth group for group MCP and group SCAD as follows:

group MCP :
∥∥X′grk−1/n∥∥2 < √pg {λk +

γ

γ − 1
(λk − λk−1)

}
(20)

group SCAD :
∥∥X′grk−1/n∥∥2 < √pg {λk +

γ

γ − 2
(λk − λk−1)

}
. (21)

Although we framed this derivation in the linear regression setting, note that these rules apply to the

generalized linear model case as well, provided that the link function is included in the calculation of

rk−1, as in Section 3.2.
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4 Simulation study

In this section, we carry out a more thorough investigation of the illustration presented in Figure 1 in

terms of the frequency of strong rule violations. We first consider linear and logistic regression for MCP

and SCAD. The simulation design follows the description in Section 2 for the linear regression case; for

logistic regression, the design is the same except that yi follows a Bernoulli distribution with the logistic

link function and the nonzero regression coefficients equal ±0.5. For 100 independently generated data

sets, we record the number of eliminated variables, the number of λ values at which a violation occurred,

and the total number of erroneously discarded variables. For the violations, we also record whether the

violation occurred in the locally convex region of the solution path or not.

Table 1: Simulation results for MCP and SCAD strong rules with n = 200 and p = 2, 000. Results

averaged over 100 independent data sets.

Model Method ρ Average # of

eliminated

variables

Number of

violated λ

values

Number of

violated

variables

Number of

violated λ

(convex region)

MCP 0 1971.17 1.23 4.13 0.01

Linear 0.5 1973.76 6.28 12.74 0.01

regression SCAD 0 1958.19 0.16 0.62 -

0.5 1958.77 7.69 36.37 -

MCP 0 1970.81 2.36 6.37 -

Logistic 0.5 1982.41 2.23 3.98 -

regression SCAD 0 1935.91 3.72 18.23 -

0.5 1966.88 4.51 16.96 -

Table 1 presents the results of this simulation, averaged over the 100 replications. Overall, the table

reflects the earlier observations made concerning Figure 1. The strong rules discard a large proportion

of variables in the inactive sets and thereby achieve considerable dimension reduction in p > n problems.

The rules are not foolproof: violations occur regularly, and the problem is exacerbated by high correlation

among the covariates, although logistic regression is less sensitive to correlation than is linear regression.

Nevertheless, violations only occur at a small number of the 100 λ values along the solution path,

and almost always occur in the non-locally convex region. For example, in the linear regression case

with ρ = 0, a single violation in 100 data sets was observed for MCP in the locally convex region, which

accounts for less than 1% of the observed violations. In many of the scenarios, no violations in the locally

convex region occurred.
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We also study the performance of strong rules for group variable selection using group MCP and group

SCAD using the following simulation design. The covariates follow a standard Gaussian distribution with

a block-diagonal correlation structure such that within-block correlation is 0.5. The design matrix consists

of 500 groups (blocks), each with 4 elements. The coefficients for the first 6 groups are equal to ±1 for

linear regression and ±0.5 for logistic regression; the coefficients in the other 494 groups are all zero. We

fixed the sample size at 200 (i.e., n = 200, G = 500 and p = 2, 000).

Table 2: Simulation results for group MCP and group SCAD strong rules with n = 200, G = 500 and

p = 2, 000. Within-block correlation ρ is 0.5. Results averaged over 100 independent data sets.

Model Method Average # of

eliminated

groups

Number of

violated λ

values

Number of

violated

groups

Number of

violated λ

(convex region)

Linear gMCP 492.99 - - -

regression gSCAD 492.44 - - -

Logistic gMCP 492.07 0.11 0.11 0.01

regression gSCAD 487.30 1.12 1.78 -

Table 2 shows the number of discarded groups, as well as the number of strong rule violations, averaged

over 100 independent data sets. As in the non-grouped case, violations occur only for a small fraction of

the 100 λ values along the solution path, and almost always in the non-locally convex region.

5 Incorporation of strong rules into model-fitting algorithms

In this section, we discuss the incorporation of strong rules into the coordinate descent (CD) algorithm

of Breheny and Huang (2011) for fitting nonconvex penalized regression models. The algorithms we

propose may be viewed as modifications of the idea behind coordinate descent: rather than cycling over

the full set of variables with every iteration, the availability of strong rules and other heuristics allow one

to carry out targeted cycling in which computational effort is concentrated on the variables most likely

to be nonzero and therefore change from one λ value to the next. We consider three targeted cycling

algorithms: one based on strong rules, one based on active set cycling, and a hybrid algorithm combining

the two heuristics.

Algorithm 1 describes the incorporation of strong rules into the coordinate descent algorithm; we refer

to this approach as the strong rule algorithm. The algorithm relies on computing the strong set S(λ),

which we define as the set of variables remaining after discarding variables according to the strong rules
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Algorithm 1 Dimension reduction using strong rules for targeted cycling

for k = 1, 2, . . . ,m

Calculate the strong set S(λk) and let T = S(λk)

repeat

Find the solution β̂T (λk) using only the variables in T

Find V = {j ∈ T c : |x′jr/n| ≥ λk}

Update T by T ∪ V

until V = ∅

(10, 11), and then using this set as the target set T that we cycle over until convergence. As discussed

previously, it is possible for strong rules to be violated, and therefore necessary to calculate the set of

violations V in order to ensure that all solutions β̂ satisfy the KKT conditions at convergence.

An alternative approach is to use the active set A(λk−1) as the target set for calculating the solution

at the next step in the solution path, β̂(λk). The algorithm, which we refer to as active set cycling

(Friedman et al., 2010), is the same as Algorithm 1 with the active set A(λk−1) replacing the strong set

S(λk).

Algorithm 2 Dimension reduction using a hybrid of strong rules and active set cycling

for k = 1, 2, . . . ,m

Set T = A(λk−1) and S = S(λk)

repeat

repeat

Find the solution β̂T (λk) using only the variables in T

Find V1 = {j ∈ S \ T : |x′jr/n| ≥ λk}

Update T by T ∪ V1
until V1 = ∅

Find V2 = {j ∈ T c \ S : |x′jr/n| ≥ λk}

Update T by T ∪ V2
until V2 = ∅

The final approach we consider combines the active set and strong sets into an algorithm that involves

two-stage targeted cycling. The details are provided in Algorithm 2, which we refer to as the hybrid

algorithm.

Contrasting the four algorithms (cyclic, strong, active, and hybrid), there is a tradeoff between how

aggressive the algorithms are in terms of discarding variables and how often violations involving erro-
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neously discarded variables occur. Discarding variables naturally increases the speed of optimization over

the target set; however, violations introduce a computational cost as well, since the iterative targeted

cycling procedure must be restarted and the KKT conditions re-checked. At one extreme, active set

cycling discards the largest number of variables, but its targeted cycling rule is violated every time a

new variable enters the active set. On the other extreme, full cyclic coordinate descent does not have to

contend with violations or re-check any KKT conditions, but must contend with the full set of variable

at every step. The strong and hybrid algorithms attempt to occupy a middle ground between these two

extremes, reducing dimensionality as much as possible without introducing a large number of violations.
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Figure 3: Comparison of the cyclic CD algorithm and targeted cycling algorithms in terms of computing time

required to fit the entire coefficient path down to λmin/λmax = 0.05 for linear regression as a function of the

number of covariates p. Both axes are on the log scale. Median times over 20 replications are displayed.

Figure 3 demonstrates that all three targeted cycling algorithms are considerably faster than full

cyclic coordinate descent, and that the magnitude of the difference is substantial for high dimensional

problems. For example, the median time required to fit a SCAD model with ρ = 0.5 and p = 100, 000

was 1,711 seconds using cyclic coordinate descent and just 23 seconds using the strong rule algorithm. It

is worth noting that even though strong rules are more likely to be violated as correlation increases, the

fact that optimization algorithms must go through a larger number of iterations in this case results in an

even greater advantage for targeted cycling in the correlated case than in the uncorrelated case.

In Figure 3, it is clear that targeted cycling is more efficient than full cyclic CD, but it is unclear how

the target cycling algorithms compare to each other. In Figure 4, we compare the speed of the three

targeted cycling algorithms for linear, logistic, and Poisson regression. In each case, 20 variables are set
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Figure 4: Comparison of targeted cycling algorithms in terms of computational time required to fit the entire

coefficient path for linear (top), logistic (middle) and Poisson regression (bottom). Median computing times over

20 replications are displayed.

to ±0.5 with the remaining variables set to zero, and the outcome follows the distribution assumed in

the GLM. In all cases, the strong rule and hybrid algorithms were seen to be more efficient than active

set cycling. Although the difference in computing time between the targeted cycling algorithms is minor

for small p, active set cycling can take almost twice as long for high-dimensional models. For example,

fitting a SCAD-penalized logistic regression model with p = 100, 000 required a median computing time

of 11 seconds for active cycling and only 7 seconds for the strong rule and hybrid algorithms.

Although the strong rule algorithm was slightly faster than the hybrid algorithm in Figure 4, we have

found that there are situations in which the hybrid algorithm offers considerably better performance than

the strong rule approach. We depict one such situation for linear regression in Figure 5. The top panel

(“Case 1”) of Figure 5 is similar to the situations we have examined so far, with n = 200, p = 20, 000,

ρ = 0, and 20 nonzero coefficients equal to ±1. Here, the variance of Gaussian noise was chosen so that

the signal-to-noise ratio was equal to 3. The setting for the bottom panel (“Case 2”) is the same, except

that the nonzero coefficients all have coefficients equal to +1. In Case 1, the size of the target set for
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Figure 5: Comparison of the size of strong and active sets for each λ for simulated Gaussian data with ρ = 0,

n = 200 and p = 20, 000. In “Case 1” (top panel), nonzero coefficients are equal to ±1; in “Case 2” (bottom

panel), all nonzero coefficients equal +1.

the strong rule algorithm matches the active set quite closely, and nearly all the variables that can be

eliminated are eliminated by the strong rules. In Case 2, however, although the strong rules are still valid

and rarely violated, they do not yield a target set that closely matches the active set, and fail to discard

hundreds of variables that remained inactive.

In Case 1, there were minimal differences between the computing time of the three targeted cycling

algorithms (all were within 1 second of each other). In Case 2, however, the strong rule algorithm was

substantially slower than active cycling and the hybrid algorithm due to the much larger size of its target

set. For SCAD, where the difference in target set size was most dramatic, the strong rule algorithm

required 19 seconds, while active cycling required just 5. As it is designed to do, the hybrid algorithm

utilizes the best features of each heuristic and requires just 4 seconds to compute the solution path.

In summary, we find the hybrid algorithm to be the most robust of the targeted cycling approaches

– never much slower than the strong rule algorithm, and in some cases much faster. For this reason, we

have implemented the hybrid algorithm for lasso, SCAD, and MCP-penalized linear, logistic, and Poisson

regression in the ncvreg package.

6 Application to genome-wide association studies

In this section, we apply the algorithms described in Section 5 to real data from a genome-wide association

study (GWAS) of preeclampsia. The data were collected during the Study of Pregnancy Hypertension in
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Iowa (SOPHIA), a population-based case-control study. We provide a brief description of the data here;

the study is described in greater detail in Zhao et al. (2012).

The sample consists of 177 mothers diagnosed with preeclampsia according to National Heart, Lung

and Blood Institute guidelines and 115 mothers with normal blood pressure to serve as controls. All 292

mothers were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa

Clara, CA). After applying quality control procedures and eliminating monomorphic markers, we were

left with 810,198 single-nucleotide polymorphisms (SNPs) to serve as potential predictors of preeclampsia

risk.

We analyzed this data using MCP-penalized logistic regression with case-control status as the response

variable. Allele effects were assumed to be additive and independent, thereby yielding a design matrix

with n = 292 and p = 810, 198. Due to the fact that p � n, we fit the penalized regression model over

a relatively small portion of the coefficient path, down to λmin/λmax = 0.8, at which point 22 SNPs had

entered the model. Despite the large number of features in the design matrix, the penalized regression

models could be fit very rapidly: using the strong rule algorithm, the solution path could be fit in just

4.7 seconds on a standard desktop computer (3.60GHz Intel Xeon processor, 16 GB RAM). The active

cycling algorithm took somewhat longer, at 7.9 seconds, while the performance of the hybrid algorithm

was similar to that of the strong rule approach (4.9 seconds to fit the solution path).

The SNPs selected by the penalized regression model are consistent with the top-ranked SNPs in terms

of univariate hypothesis testing using Fisher’s exact test, as reported in Zhao et al. (2012). However,

we reach the same conclusion that the authors of the previous study reached – namely, that there is

insufficient evidence in the data to perform variable selection with any meaningful degree of reliability.

In particular, when we carry out 10-fold cross-validation for the purposes of selecting λ, we find that the

optimal model is the intercept-only model.

Although this particular study was negative in terms of identifying genetic risk factors for preeclamp-

sia, it illustrates the feasibility of fitting penalized regression models to very high-dimensional data. The

current genome-wide association literature is overwhelmingly focused on univariate tests, which have

many shortcomings compared to multivariate modeling: inefficiency, increased risk of confounding, and

limited predictive inference, among others. Several authors have recommended penalized regression as

an alternative, and discussed its benefits in comparison with univariate testing (Zhou et al., 2010; Wu

et al., 2009). Others, however, have judged the problem to be computationally impractical for the very

high dimensions that prevail at the genome-wide scale and developed multi-stage or iterative screening

proposals to reduce the dimensionality of the problem (Fan and Lv, 2008; Shi et al., 2011; Zhao and Chen,

2012). We demonstrate here that such approaches are not necessary – or, depending on your perspective,

that screening is indeed a very useful idea, but it can be incorporated directly into coordinate descent
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algorithms through targeted cycling.

7 Discussion

Concern over the computational burden of penalized regression in very high dimensions has prevented

its use in many fields, particularly in genetics. This concern, in turn, has led many researchers to pre-

screening procedures to reduce the dimensionality of the problem before fitting the penalized regression

model. At best, this complicates both the theoretical study of such procedures and the practical imple-

mentation of procedures such as cross-validation. At worst, it opens the door for bad statistical practice

by obfuscating the multiple comparison problem. For example, if pre-screening is used to select candi-

date variables on the full data set, and then cross-validation is used to select a tuning parameter λ, the

resulting inference is heavily biased by the fact that the external validation data is not truly external, as

it has already been used for screening.

It is possible to carry out unbiased cross-validation in the presence of screening, but it is also very

easy for a well-intentioned investigator to make a mistake (a thorough discussion of this issue may be

found in Hastie et al., 2009). In contrast, cross-validation is both straightforward and computationally

feasible, and already implemented existing software such as glmnet and ncvreg. In particular, for the

analysis in Section 6, ten-fold cross validation was carried out in under a minute despite fitting nonconvex

penalized logistic regression models with p = 810, 198 variables.

With this work, we have demonstrated that fitting high-dimensional nonconvex penalized regression

models can be made computationally feasible through the use of targeted cycling and strong rules to

achieve dimension reduction. Furthermore, by sharing implementations of these algorithms in the publicly

available R package ncvreg, we hope to encourage researchers to adopt these methods with greater

regularity for analyzing high-dimensional data.
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