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A Selective Review of Group Selection in
High-Dimensional Models
Jian Huang, Patrick Breheny and Shuangge Ma

Abstract. Grouping structures arise naturally in many statistical modeling
problems. Several methods have been proposed for variable selection that re-
spect grouping structure in variables. Examples include the group LASSO
and several concave group selection methods. In this article, we give a se-
lective review of group selection concerning methodological developments,
theoretical properties and computational algorithms. We pay particular at-
tention to group selection methods involving concave penalties. We address
both group selection and bi-level selection methods. We describe several ap-
plications of these methods in nonparametric additive models, semiparamet-
ric regression, seemingly unrelated regressions, genomic data analysis and
genome wide association studies. We also highlight some issues that require
further study.
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1. INTRODUCTION

Consider a linear regression model with p predic-
tors. Suppose the predictors can be naturally divided
into J nonoverlapping groups, and the model is writ-
ten as

y =
J∑

j=1

Xjβj + ε,(1.1)

where y is an n × 1 vector of response variables, Xj

is the n × dj design matrix of the dj predictors in the
j th group, βj = (βj1, . . . , βjdj

)′ ∈ R
dj is the dj × 1

vector of regression coefficients of the j th group and ε
is the error vector. Without loss of generality, we take
both the predictors and response to be centered around
the mean. It is desirable to treat each group of variables
as a unit and take advantage of the grouping structure
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present in these models when estimating regression co-
efficients and selecting important variables.

Many authors have considered the problem of group
selection in various statistical modeling problems.
Bakin (1999) proposed the group LASSO and a com-
putational algorithm. This method and related group
selection methods and algorithms were further devel-
oped by Yuan and Lin (2006). The group LASSO uses
an �2 norm of the coefficients associated with a group
of variables in the penalty function and is a natural ex-
tension of the LASSO (Tibshirani, 1996). Antoniadis
and Fan (2001) studied a class of block-wise shrinkage
approaches for regularized wavelet estimation in non-
parametric regression problems. They discussed sev-
eral ways to shrink wavelet coefficients in their nat-
ural blocks, which include the blockwise hard- and
soft-threshold rules. Meier, van de Geer and Bühlmann
(2008) studied the group LASSO for logistic regres-
sion. Zhao, Rocha and Yu (2009) proposed a quite
general composite absolute penalty for group selec-
tion, which includes the group LASSO as a special
case. Huang, Ma, Xie and Zhang (2009) considered the
problem of simultaneous group and individual variable
selection, or bi-level selection, and proposed a group
bridge method. Breheny and Huang (2009) proposed a
general framework for bi-level selection in generalized
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linear models and derived a local coordinate descent
algorithm.

Grouping structures can arise for many reasons, and
give rise to quite different modeling goals. Common
examples include the representation of multilevel cat-
egorical covariates in a regression model by a group
of indicator variables, and the representation of the ef-
fect of a continuous variable by a set of basis func-
tions. Grouping can also be introduced into a model in
the hopes of taking advantage of prior knowledge that
is scientifically meaningful. For example, in gene ex-
pression analysis, genes belonging to the same biolog-
ical pathway can be considered a group. In genetic as-
sociation studies, genetic markers from the same gene
can be considered a group. It is desirable to take into
account the grouping structure in the analysis of such
data.

Depending on the situation, the individual variables
in the groups may or may not be meaningful scientif-
ically. If they are not, we are typically not interested
in selecting individual variables; our interest is entirely
in group selection. However, if individual variables are
meaningful, then we are usually interested in selecting
important variables as well as important groups; we re-
fer to this as bi-level selection. For example, if we rep-
resent a continuous factor by a set of basis functions,
the individual variables are an artificial construct, and
selecting the important members of the group is typ-
ically not of interest. In the gene expression and ge-
netic marker examples, however, selection of individ-
ual genes/markers is just as important as selecting im-
portant groups. In other examples, such as a group of
indicator functions for a categorical variable, whether
we are interested in selecting individual members de-
pends on the context of the study.

We address both group selection and bi-level selec-
tion in this review. The distinction between these two
goals is crucial for several reasons. Not only are differ-
ent statistical methods used for each type of problem,
but as we will see, the predictors in a group can be
made orthonormal in settings where bi-level selection
is not a concern. This has a number of ramifications for
deriving theoretical results and developing algorithms
to fit these models.

We give a selective review of group selection con-
cerning methodological developments, theoretical
properties and computational algorithms. We describe
several important applications of group selection and
bi-level selection in nonparametric additive models,
semiparametric regression, seemingly unrelated re-
gressions, genomic data analysis and genome wide as-
sociation studies. We also highlight some issues that

require further study. For the purposes of simplicity,
we focus on penalized versions of least squares re-
gression in this review. Many authors have extended
these models to other loss functions, in particular those
of generalized linear models. We attempt to point out
these efforts when relevant.

2. GROUP SELECTION METHODS

2.1 Group LASSO

For a column vector v ∈ R
d with d ≥ 1 and a pos-

itive definite matrix R, denote ‖v‖2 = (v′v)1/2 and
‖v‖R = (v′Rv)1/2. Let β = (β ′

1, . . . ,β
′
J )′, where βj ∈

R
dj . The group LASSO solution β̂(λ) is defined as a

minimizer of

1

2n

∥∥∥∥∥y −
J∑

j=1

Xjβj

∥∥∥∥∥
2

2

+ λ

J∑
j=1

cj‖βj‖Rj
,(2.1)

where λ ≥ 0 is the penalty parameter and Rj ’s are
dj × dj positive definite matrices. Here the cj ’s in the
penalty are used to adjust for the group sizes. A rea-
sonable choice is cj = √

dj . Because (2.1) is convex,
any local minimizer of (2.1) is also a global minimizer
and is characterized by the Karush–Kuhn–Tucker con-
ditions as given in Yuan and Lin (2006). It is possible,
however, for multiple solutions to exist, as (2.1) may
not be strictly convex in situations where the ordinary
least squares estimator is not uniquely defined.

An important question in the definition of group
LASSO is the choice of Rj . For orthonormal Xj with
X′

jXj/n = Idj
, j = 1, . . . , J , Yuan and Lin (2006)

suggested taking Rj = Idj
. However, using Rj = Idj

may not be appropriate, since the scales of the pre-
dictors may not be the same. In general, a reasonable
choice of Rj is to take the Gram matrix based on Xj ,
that is, Rj = X′

jXj/n, so that the penalty is propor-
tional to ‖Xjβj‖2. This is equivalent to performing
standardization at the group level, which can be seen
as follows. Write Rj = U ′

jUj for a dj × dj upper tri-
angular matrix Uj via Cholesky decomposition. Let
X̃j = XjU

−1
j and bj = Ujβj . Criterion (2.1) becomes

1

2n

∥∥∥∥∥y −
J∑

j=1

X̃j bj

∥∥∥∥∥
2

2

+ λ

J∑
j=1

cj‖bj‖2.(2.2)

The solution to the original problem (2.1) can be ob-
tained by using the transformation βj = U−1

j bj . By

the definition of Uj , we have n−1X̃′
j X̃j = Idj

. There-
fore, by using this choice of Rj , without loss of gen-
erality, we can assume that Xj satisfies n−1X′

jXj =
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Idj
,1 ≤ j ≤ J . Note that we do not assume Xj and

Xk , j �= k, are orthogonal.
The above choice of Rj is easily justified in the spe-

cial case where dj = 1,1 ≤ j ≤ J . In this case, the
group LASSO simplifies to the standard LASSO and
Rj = ‖Xj‖2/n is proportional to the sample variance
of the j th predictor. Thus, taking Rj to be the Gram
matrix is the same as standardizing the predictors be-
fore the analysis, which is often recommended when
applying LASSO for variable selection.

Several authors have studied the theoretical proper-
ties of the group LASSO, building on the ideas and ap-
proaches for studying the behavior of the LASSO, on
which there is an extensive literature; see Bühlmann
and van de Geer (2011) and the references therein.
Bach (2008) showed that the group LASSO is group
selection consistent in a random design model for
fixed p under a variant of the irrepresentable condi-
tion (Meinshausen and Bühlmann, 2006; Zhao and Yu,
2006; Zou, 2006). Nardi and Rinaldo (2008) consid-
ered selection consistency of the group LASSO under
an irrepresentable condition and the bounds on the pre-
diction and estimation errors under a restricted eigen-
value condition (Bickel, Ritov and Tsybokov, 2009;
Koltchinskii, 2009), assuming that the Gram matri-
ces X′

jXj/n are proportional to the identity matrix.
Wei and Huang (2010) considered the sparsity and
�2 bounds on the estimation and prediction errors of
the group LASSO under the sparse Riesz condition
(Zhang and Huang, 2008). They also studied the se-
lection property of the adaptive group LASSO using
the group LASSO as the initial estimate. The adap-
tive group LASSO can be formulated in a way simi-
lar to the standard adaptive LASSO (Zou, 2006). Re-
cently, there has been considerable progress in the
studies of the LASSO based on sharper versions of
the restricted eigenvalue condition (van de Geer and
Bühlmann, 2009; Zhang, 2009; Ye and Zhang, 2010).
It would be interesting to extend these results to the
group LASSO.

A natural question about the group LASSO is under
what conditions it will perform better than the standard
LASSO. This question was addressed by Huang and
Zhang (2010), who introduced the concept of strong
group sparsity. They showed that the group LASSO is
superior to the standard LASSO under the strong group
sparsity and certain other conditions, including a group
sparse eigenvalue condition. More recently, Lounici et
al. (2011) conducted a detailed analysis of the group
LASSO. They established oracle inequalities for the
prediction and �2 estimation errors of group LASSO

under a restricted eigenvalue condition on the design
matrix. They also showed that the rate of convergence
of their upper bounds is optimal in a minimax sense, up
to a logarithmic factor, for all estimators over a class of
group sparse vectors. Furthermore, by deriving lower
bounds for the prediction and �2 estimation errors of
the standard LASSO they demonstrated that the group
LASSO can have smaller prediction and estimation er-
rors than the LASSO.

While the group LASSO enjoys excellent proper-
ties in terms of prediction and �2 estimation errors,
its selection consistency hinges on the assumption that
the design matrix satisfies the irrepresentable condi-
tion. This condition is, in general, difficult to sat-
isfy, especially in p � n models (Zhang, 2010a). Fan
and Li (2001) pointed out that the standard LASSO
over-shrinks large coefficients due to the nature of �1
penalty. As a result, the LASSO tends to recruit unim-
portant variables into the model in order to compensate
for its overshrinkage of large coefficients, and conse-
quently, it may not be able to distinguish variables with
small to moderate coefficients from unimportant ones.
This can lead to relatively high false positive selection
rates. Leng, Lin and Wahba (2006) showed that the
LASSO does not achieve selection consistency if the
penalty parameter is selected by minimizing the pre-
diction error. The group LASSO is likely to behave
similarly. In particular, the group LASSO may also
tend to select a model that is larger than the underlying
model with relatively high false positive group selec-
tion rate. Further work is needed to better understand
the properties of the group LASSO in terms of false
positive and false negative selection rates.

2.2 Concave 2-Norm Group Selection

The group LASSO can be constructed by applying
the �1 penalty to the norms of the groups. Specif-
ically, for ρ(t;λ) = λ|t |, the group LASSO penalty
can be written as λcj‖βj‖Rj

= ρ(‖βj‖Rj
; cjλ). Other

penalty functions could be used instead. Thus a more
general class of group selection methods can be based
on the criterion

1

2n

∥∥∥∥∥y−
J∑

j=1

Xjβj

∥∥∥∥∥
2

2

+
J∑

j=1

ρ(‖βj‖Rj
; cjλ, γ ),(2.3)

where ρ(t; cjλ, γ ) is concave in t . Here γ is an addi-
tional tuning parameter that may be used to modify ρ.
As in the definition of the group LASSO, we assume
without loss of generality that each Xj is orthonormal
with X′

jXj/n = Idj
and ‖βj‖Rj

= ‖βj‖2.
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It is reasonable to use penalty functions that work
well for individual variable selection. Some possi-
ble choices include: (a) the bridge penalty with ρ(x;
λ,γ ) = λ|x|γ ,0 < γ ≤ 1 (Frank and Friedman, 1993);
(b) the SCAD penalty with ρ(x;λ,γ ) = λ

∫ |x|
0 min{1,

(γ − t/λ)+/(γ − 1)}dt , γ > 2 (Fan and Li, 2001; Fan
and Peng, 2004), where for any a ∈ R, a+ denotes its
positive part, that is, a+ = a1{a≥0}; (c) the minimax

concave penalty (MCP) with ρ(x;λ,γ ) = λ
∫ |x|

0 (1 −
t/(γ λ))+ dt, γ > 1 (Zhang, 2010a). All these penal-
ties have the oracle property for individual variables,
meaning that the corresponding penalized estimators
are equal to the least squares estimator assuming the
model is known with high probability under appropri-
ate conditions. See Huang, Horowitz and Ma (2008)
for the bridge penalty, Fan and Li (2001) and Fan
and Peng (2004) for the SCAD penalty and Zhang
(2010) for the MC penalty. By applying these penalties
to (2.3), we obtain the 2-norm group bridge, 2-norm
group SCAD and 2-norm group MCP, respectively.
Another interesting concave penalty is the capped-
�1 penalty ρ(t;λ,γ ) = min(γ λ2/2, λ|t |) with γ > 1
(Zhang, 2010b; Shen, Zhu and Pan, 2011). However,
this penalty has not been applied to the group selection
problems.

For cj = √
dj , the group MCP and capped-�1 penalty

satisfy the invariance property

ρ
(‖βj‖2;

√
djλ, γ

) = ρ
(√

dj‖βj‖2;λ,djγ
)
.(2.4)

Thus the rescaling of λ can also be interpreted based on
the expression on the right-hand side of (2.4). The mul-
tiplier

√
dj of ‖βj‖2 standardizes the group size. This

ensures that smaller groups will not be overwhelmed
by larger groups. The multiplier dj for γ makes the
amount of regularization per group proportional to its
size. Thus the interpretation of γ remains the same
as that in the case where group sizes are equal to
one. Because the MCP is equivalent to the �1 penalty
when γ = ∞, the �1 penalty also satisfies (2.4). How-
ever, many other penalties, including the SCAD and �q

penalties with q �= 1, do not satisfy (2.4).
An interesting question that has not received ade-

quate attention is how to determine the value of γ .
In linear regression models with standardized predic-
tors, Fan and Li (2001) suggested using γ ≈ 3.7 in
the SCAD penalty, and Zhang (2010a) suggested using
γ ≈ 2.7 in the MCP. Note, however, that when γ →
∞, the group MCP converges to the group LASSO,
and when γ → 1, it converges to the group hard thresh-
old penalty (Antoniadis, 1996)

ρ(t;λ) = λ2 − 1
2(|t | − λ)21{|t |≤λ}.

Clearly, the choice of γ has a big impact on the esti-
mate. See Mazumder, Friedman and Hastie (2011) and
Breheny and Huang (2011) for further discussion on
the choice of γ .

To illustrate this point in the grouped variable set-
ting, we consider a simple example with J = 20
groups, in which only the first two groups have nonzero
coefficients with β1 = (−√

2,
√

2)′,β2 = (0.5,1,

−0.5)′, so ‖β1‖2 = 2 and ‖β2‖2 ≈ 1.22. The sizes of
the groups with zero coefficients are 3. The top panel
in Figure 1 shows the paths of the estimated norms
‖β̂1‖ and ‖β̂2‖ for γ = 1.2,2.5 and ∞, where γ = ∞
corresponds to the group LASSO. The bottom panel
shows the solution paths of the individual coefficients.
It can be seen that the characteristics of the solution
paths are quite different for different values of γ . For
the 2-norm group MCP with γ = 1.2 or 2.5, there is a
region in the paths where the estimates are close to the
true parameter values. However, for the group LASSO
(γ = ∞), the estimates are always biased toward zero
except when λ = 0.

2.3 Orthogonal Groups

To have some understanding of the basic character-
istics of the group LASSO and nonconvex group se-
lection methods, we consider the special case where
the groups are orthonormal with X′

jXk = 0, j �= k and
X′

jXj/n = Idj
. In this case, the problem simplifies

to that of estimation in J single-group models of the
form y = Xjθ + ε. Let z = X′

j y/n be the least squares
estimator of θ . Without loss of generality, let cj = 1
below in this section. We have n−1‖y − Xjθ‖2

2 =
‖z− θ‖2

2 +n−1‖y‖2
2 −‖z‖2

2 since X′
jXj/n = Idj

. Thus

the penalized least squares criterion is 2−1‖z − θ‖2
2 +

ρ(‖θ‖2;λ,γ ). Denote

S(z; t) =
(

1 − t

‖z‖2

)
+

z.(2.5)

This expression is used in Yuan and Lin (2006) for
computing the group LASSO solutions via a group co-
ordinate descent algorithm. It is a multivariate version
of the soft-threshold operator (Donoho and Johnstone,
1994) in which the soft-thresholding is applied to the
length of the vector, while leaving its direction un-
changed. By taking ρ to be the �1, MCP and SCAD
penalties, it can be verified that the group LASSO,
group MCP and group SCAD solutions in a single
group model have the following expressions:

• Group LASSO:

θ̂gLASSO(z;λ) = S(z, λ).(2.6)
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FIG. 1. The solution paths of the 2-norm group MCP for γ = 1.2,2.7 and ∞, where γ = ∞ corresponds to the group LASSO. The top
panel shows the paths of the �2 norms of βj ; the bottom shows the paths of the individual coefficients. The solid lines and dashed lines in the
plots indicate the paths of the coefficients in the nonzero groups 1 and 2, respectively. The dotted lines represent the zero groups.

• 2-norm group MCP: for γ > 1,

θ̂gMCP(z;λ,γ )
(2.7)

=
{ γ

γ−1S(z, λ), if ‖z‖2 ≤ γ λ,
z, if ‖z‖2 > γλ.

• 2-norm group SCAD: for γ > 2,

θ̂gSCAD(z;λ,γ )

(2.8)

=
⎧⎨⎩

S(z;λ), if ‖z‖2 ≤ 2λ,
γ−1
γ−2S

(
z; γ λ

γ−1

)
, if 2λ < ‖z‖2 ≤ γ λ,

z, if ‖z‖2 > γλ.

The group LASSO solution here is simply the mul-
tivariate soft-threshold operator. For the 2-norm group
MCP solution, in the region ‖z‖2 > γλ, it is equal to
the unbiased estimator z, and in the remaining region,
it is a scaled-up soft threshold operator. The 2-norm
group SCAD is similar to the 2-norm group MCP in
that it is equal to the unbiased estimator z in the region
‖z‖2 > γλ. In the region ‖z‖2 ≤ γ λ, the 2-norm group
SCAD is also related to the soft threshold operator, but

takes a more complicated form than the 2-norm group
MCP.

For the 2-norm group MCP, θ̂gMCP(·;λ,γ ) →
θ̂gLASSO(·;λ) as γ → ∞ and θ̂gMCP(·;λ,γ ) → H(·;λ)

as γ → 1 for any given λ > 0, where H(·;λ) is the
hard-threshold operator defined as

H(z;λ) ≡
{

0, if ‖z‖2 ≤ λ,
z, if ‖z‖2 > λ.

(2.9)

Therefore, for a given λ > 0, {θ̂gMCP(·;λ,γ ) : 1 < γ ≤
∞} is a family of threshold operators with the mul-
tivariate hard and soft threshold operators at the ex-
tremes γ = 1 and ∞.

For the 2-norm group SCAD, we have θ̂gSCAD(·;λ,

γ ) → θ̂gLASSO(·;λ) as γ → ∞ and θ̂gSCAD(·;λ,γ ) →
H ∗(·;λ) as γ → 2, where

H ∗(z;λ) ≡
{

S(z;λ), if ‖z‖2 ≤ 2λ,
z, if ‖z‖2 > 2λ.

(2.10)

This is different from the hard threshold operator (2.9).
For a given λ > 0, {θ̂gSCAD(·;λ,γ ) : 2 < γ ≤ ∞} is a
family of threshold operators with H ∗ and soft thresh-
old operators at the extremes γ = 2 and ∞. Note that
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the hard threshold operator is not included in the group
SCAD family.

The closed-form expressions given above illustrate
some important differences of the three group selec-
tion methods. They also provide building blocks of
the group coordinate descent algorithm for computing
these solutions described below.

2.4 Computation via Group Coordinate Descent

Group coordinate descent (GCD) is an efficient ap-
proach for fitting models with grouped penalties. The
first algorithm of this kind was proposed by Yuan and
Lin (2006) as a way to compute the solutions to the
group LASSO. Because the solution paths of the group
LASSO are not piecewise linear, they cannot be com-
puted using the LARS algorithm (Efron et al., 2004).

Coordinate descent algorithms (Fu, 1998; Friedman
et al., 2007; Wu and Lange, 2008) have become widely
used in the field of penalized regression. These algo-
rithms were originally proposed for optimization in
problems with convex penalties such as the LASSO,
but have also been used in calculating SCAD and MCP
estimates (Breheny and Huang, 2011). We discuss here
the idea behind the algorithm and its extension to the
grouped variable case.

Coordinate descent algorithms optimize an objective
function with respect to a single parameter at a time,
iteratively cycling through the parameters until conver-
gence is reached; similarly, group coordinate descent
algorithms optimize the target function with respect
to a single group at a time, and cycles through the
groups until convergence. These algorithms are partic-
ularly suitable for fitting group LASSO, group SCAD
and group MCP models, since all three have sim-
ple closed-form expressions for a single-group model
(2.6)–(2.8).

A group coordinate descent step consists of partially
optimizing the penalized least squares criterion (2.1) or
(2.3) with respect to the coefficients in group j . Define

Lj(βj ;λ,γ ) = 1

2n

∥∥∥∥∥y − ∑
k �=j

Xkβ̃k − Xjβj

∥∥∥∥∥
2

2

+ ρ(‖βj‖2; cjλ, γ ),

where β̃ denotes the most recently updated value of β .
Denote ỹj = ∑

k �=j Xkβ̃k and z̃j = X′
j (y− ỹj )/n. Note

that ỹj represents the fitted values excluding the contri-
bution from group j , and z̃j represents the correspond-

ing partial residuals. Just as in ordinary least squares
regression, the value βj that optimizes Lj(βj ;λ,γ )

is equal to the value we obtain from regressing βj

on the partial residuals. In other words, the minimizer
of Lj(βj ;λ,γ ) is given by F(z̃j ;λ,γ ), where F is
one of the solutions in (2.6) to (2.8), depending on the
penalty used.

Let β̃
(0) = (β̃

(0)′
1 , . . . , β̃

(0)′
J )′ be the initial value, and

let s denote the iteration. The GCD algorithm consists
of the following steps:

Step 1. Set s = 0. Initialize vector of residuals r =
y − ỹ, where ỹ = ∑J

j=1 Xj β̃
(0)

j .
Step 2. For j = 1, . . . , J , carry out the following cal-
culations:
(a) calculate z̃j = n−1X′

j r + β̃
(s)

j ;
(b) update β̃

(s+1)

j = F(z̃j ;λ,γ ),

(c) update r ← r − Xj(β̃
(s+1)

j − β̃
(s)

j ).
Step 3. Update s ← s + 1.
Step 4. Repeat steps 2–3 until convergence.

The update in Step 2(c) ensures that r always
holds the current values of the residuals, and is there-
fore ready for Step 2(a) of the next cycle. By tak-
ing F(·;λ,γ ) to be θ̂gLASSO(·;λ), θ̂gMCP(·;λ,γ ) and
θ̂gSCAD(·;λ,γ ) in (2.6) to (2.8), we obtain the so-
lutions to the group LASSO, group MCP and group
SCAD, respectively. The algorithm has two attractive
features. First, each step is very fast, as it involves only
relatively simple calculations. Second, the algorithm is
stable, as each step is guaranteed to decrease the objec-
tive function (or leave it unchanged).

The above algorithm computes β̂ for a given (λ, γ )

pair; to obtain pathwise solutions, we can use the
algorithm repeatedly over a grid of (λ, γ ) values.
For a given value of γ , we can start at λmax =
maxj {‖n−1Xj y‖2/cj }, for which β̂ has the solution 0,
and proceed along the grid using the value of β̂ at the
previous point in the λ-grid as the initial value for the
current point in the algorithm. An alternative approach
is to use the group LASSO solution (corresponding to
γ = ∞) as the initial value as we decrease γ for each
value of λ. See Mazumder, Friedman and Hastie (2011)
for a detailed description of the latter approach in the
nongrouped case.

The results of Tseng (2001) establish that the algo-
rithm converges to a minimum. For the group LASSO,
which has a convex objective function, the algorithm
therefore converges to the global minimum. For group
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SCAD and group MCP, convergence to a local mini-
mum is possible. See also Theorem 4 of Mazumder,
Friedman and Hastie (2011) for the nongrouped case.

The availability of the explicit expression in step
2(b) of the algorithm depends on the choice of Rj =
X′

jXj/n in (2.1) or (2.3). If a different norm is used,
then the groups are not orthonormal, and there are no
explicit solutions to the problem. Without closed-form
solutions, step 2(b) must be solved using numerical
optimization. Algorithms proposed for computing the
group LASSO solutions without using Rj = X′

jXj/n

include Friedman et al. (2007), Jacob, Obozinski and
Vert (2009) and Liu and Ye (2010). For generalized
linear models, the group coordinate descent can be ap-
plied based on quadratic approximations to the log-
likelihood in the objective function (Meier, van de Geer
and Bühlmann, 2008).

3. BI-LEVEL SELECTION

The methods described in Section 2 produce esti-
mates that are sparse at the group level and not at the
level of individual variables. Within a group, there are
only two possibilities for the selection results based on
these methods: either all of the variables are selected,
or none of them are. This is not always appropriate for
the data.

For example, consider a genetic association study in
which the predictors are indicators for the presence of
genetic variation at different markers. If a genetic vari-
ant located in a gene is associated with the disease, then
it is more likely that other variants located in the same
gene will also be associated with the disease—the pre-
dictors have a grouping structure. However, it is not
necessarily the case that all variants within that gene
are associated with the disease. In such a study, the
goal is to identify important individual variants, but
to increase the power of the search by incorporating
grouping information.

In this section, we discuss bi-level selection meth-
ods, which are capable of selecting important groups
as well as important individual variables within those
groups. The underlying assumption is that the model
is sparse at both the group and individual variable lev-
els. That is, the nonzero group coefficients βj are also
sparse. It should be noted, however, that less work has
been done on bi-level selection than on group LASSO,
and there are still many unanswered questions.

3.1 Concave 1-Norm Group Penalties

As one might suspect, based on analogy with LASSO
and ridge regression, it is possible to construct penal-
ties for bi-level selection by starting with the �1 norm

instead of the �2 norm. This substitution is not trivial,
however: a naïve application of the LASSO penalty
to the �1 norm of a group results in the original
LASSO, which obviously has no grouping proper-
ties.

Applying a concave penalty to the �1 norm of a
group, however, does produce an estimator with group-
ing properties, as suggested by Huang et al. (2009),
who proposed the group bridge penalty. The 1-norm
group bridge applies a bridge penalty to the �1 norm of
a group, resulting in the criterion

1

2n

∥∥∥∥∥y −
J∑

j=1

Xjβj

∥∥∥∥∥
2

2

+ λ

J∑
j=1

cj‖βj
‖γ

1 ,(3.1)

where λ > 0 is the regularization parameter, γ ∈ (0,1)

is the bridge index and {cj } are constants that adjust
for the dimension of group j . For models with stan-
dardized variables, a reasonable choice is cj = |dj |γ .
When dj = 1,1 ≤ j ≤ J , (3.1) simplifies to the stan-
dard bridge criterion. The method proposed by Zhou
and Zhu (2010) can be considered a special case of
group bridge with γ = 0.5. A general composite abso-
lute penalty based on �q norms was proposed by Zhao,
Rocha and Yu (2009).

Huang et al. (2009) showed that the global group
bridge solution is group selection consistent under cer-
tain regularity conditions. Their results allow p → ∞
as n → ∞ but require p < n. In contrast to the group
LASSO, the selection consistency of group bridge does
not require an irrepresentable-type condition. How-
ever, no results are available for the group bridge in
the J � n settings.

In principle, we could apply other concave penalties
to the group �1 norm as well, leading to the more gen-
eral penalized criterion

1

2n

∥∥∥∥∥y −
J∑

j=1

Xjβj

∥∥∥∥∥
2

2

+
J∑

j=1

ρ(‖βj‖1; cjλ, γ ).(3.2)

Choosing ρ to be the SCAD or MCP penalty in (3.2)
would seem particularly promising, but to our knowl-
edge, these estimators have not been studied.

3.2 Composite Penalties

An alternative way of thinking about concave 1-norm
group penalties is that they represent the composition
of two penalties: a concave group-level penalty and
an individual variable-level 1-norm penalty. It is natu-
ral, then, to also consider the composition of concave
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FIG. 2. The group LASSO, group bridge and composite mcp penalties for a two-predictor group. Note that where the penalty comes to a
point or edge, there is the possibility that the solution will take on a sparse value; all penalties come to a point at 0, encouraging group-level
sparsity, but only group bridge and composite MCP allow for bi-level selection.

group-level penalties with other individual variable-
level penalties. This framework was proposed in Bre-
heny and Huang (2009), who described grouped penal-
ties as consisting of an outer penalty ρO applied to a
sum of inner penalties ρI . The penalty applied to a
group of predictors is therefore written as

ρO

( dj∑
k=1

ρI (|βjk|)
)
,(3.3)

where βjk is the kth member of the j th group, and the
partial derivative with respect to the jkth covariate is

ρ′
O

( dj∑
k=1

ρI (|βjk|)
)
ρ′

I (|βjk|).(3.4)

Note that the group bridge fits into this framework with
an outer bridge penalty and an inner LASSO penalty,
as does the group LASSO with an outer bridge penalty
and an inner ridge penalty.

From (3.3), we can view group penalization as ap-
plying a rate of penalization to a predictor that con-
sists of two terms: the first carries information regard-
ing the group; the second carries information about the
individual predictor. Whether or not a variable enters
the model is affected both by its individual signal and
by the collective signal of the group that it belongs to.
Thus, a variable with a moderate individual signal may
be included in a model if it belongs to a group con-
taining other members with strong signals, or may be
excluded if the rest of its group displays little associa-
tion with the outcome.

An interesting special case of the composite penalty
is using the MCP as both the outer and inner penalties,
which we refer to as the composite MCP (this penalty
was referred to as “group MCP” in Breheny and Huang
(2009); we use “composite MCP” both to better reflect
the framework and avoid confusion with the 2-norm
group MCP of Section 2.2).

The composite MCP uses the criterion

1

2n

∥∥∥∥∥y −
J∑

j=1

Xjβj

∥∥∥∥∥
2

2
(3.5)

+
J∑

j=1

ρλ,γO

( dj∑
k=1

ρλ,γI
(|βjk|)

)
,

where ρ is the MCP penalty and γO , the tuning param-
eter of the outer penalty, is chosen to be djγIλ/2 in
order to ensure that the group level penalty attains its
maximum if and only if each of its components are at
their maximum. In other words, the derivative of the
outer penalty reaches 0 if and only if |βjk| ≥ γIλ ∀k ∈
{1, . . . , dj }.

Figure 2 shows the group LASSO, 2-norm group
MCP, 1-norm group Bridge and composite MCP penal-
ties for a two-predictor group. Note that where the
penalty comes to a point or edge, there is the possi-
bility that the solution will take on a sparse value; all
penalties come to a point at 0, encouraging group-level
sparsity, but only group bridge and composite MCP al-
low for bi-level selection. In addition, one can see that
the MCP penalties are capped, while the group LASSO
and group bridge penalties are not. Furthermore, note
that the individual variable-level penalty for the com-
posite MCP is capped at a level below that of the group;
this limits the extent to which one variable can domi-
nate the penalty of the entire group. The 2-norm group
MCP does not have this property. This illustrates the
two rationales of composite MCP: (1) to avoid over-
shrinkage by allowing covariates to grow large, and (2)
to allow groups to remain sparse internally. The 1-norm
group bridge allows the presence of a single large pre-
dictor to continually lower the entry threshold of the
other variables in its group. This property, whereby a
single strong predictor draws others into the model,
prevents the group bridge from achieving consistency
for the selection of individual variables.



GROUP SELECTION 489

FIG. 3. Coefficient paths from 0 to λmax for group LASSO, 2-norm group MCP, 1-norm group bridge, and composite MCP for a simulated
data set featuring two groups, each with three covariates. In the underlying data-generating mechanism, the group represented by solid lines
has two covariates with coefficients equal to 1 and the other equal to 0; the group represented by dashed lines has two coefficients equal to 0
and the other equal to −1.

Figure 3 shows the coefficient paths from λmax down
to 0 for group LASSO, 1-norm group bridge, and com-
posite MCP for a simulated data set featuring two
groups, each with three covariates. In the underlying
model, the group represented by solid lines has two
covariates with coefficients equal to 1 and the other
equal to 0; the group represented by dashed lines has
two coefficients equal to 0 and the other equal to −1.
The figure reveals much about the behavior of grouped
penalties. In particular, we note the following: (1) Even
though each of the nonzero coefficients is of the same
magnitude, the coefficients from the more significant
solid group enter the model more easily than the lone
nonzero coefficient from the dashed group. (2) This
phenomenon is less pronounced for composite MCP,
which makes weaker assumptions about grouping. (3)
For composite MCP at λ ≈ 0.3, all of the variables
with true zero coefficients have been eliminated while
the remaining coefficients are unpenalized. In this re-
gion, the composite MCP approach is performing as
well as the oracle model. (4) In general, the coefficient
paths for these group penalization methods are contin-
uous, but are not piecewise linear, unlike those for the
LASSO.

Although composite penalties do not, in general,
have closed-form solutions in single-group models like
the penalties in Section 2, the idea of group coordi-
nate descent can still be used. The main complica-
tion is in step 2(b) for the algorithm described in Sec-
tion 2.4, where the single-group solutions need to be
solved numerically. Another approach is based on a lo-
cal coordinate descent algorithm (Breheny and Huang,
2009). This algorithm first uses a local linear approx-
imation to the penalty function (Zou and Li, 2008).

After applying this approximation, in any given co-
ordinate direction the optimization problem is equiv-
alent to the one-dimensional LASSO, which has the
soft-threshold operator as its solution. The threshold-
ing parameter λ in each update is given by expression
(3.4). Because the penalties involved are concave on
[0,∞), the linear approximation is a majorizing func-
tion, and the algorithm thus enjoys the descent property
of MM algorithms (Lange, Hunter and Yang, 2000)
whereby the objective function is guaranteed to de-
crease at every iteration. Further details may be found
in Breheny and Huang (2009). These algorithms have
been implemented in the R package grpreg, avail-
able at http://cran.r-project.org. The package computes
the group LASSO, group bridge and composite MCP
solutions for linear regression and logistic regression
models.

3.3 Additive Penalties

Another approach to achieving bi-level selection is
to add an �1 penalty to the group LASSO (Wu and
Lange, 2008; Friedman, Hastie and Tibshirani, 2010).

1

2n

∥∥∥∥∥y−
J∑

j=1

Xjβj

∥∥∥∥∥
2

2

+λ1‖β‖1 +λ2

J∑
j=1

‖βj‖2,(3.6)

where λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters.
The above objective function has the benefit of being
convex, eliminating the possibility of convergence to a
local minimum during model fitting. The group coordi-
nate descent algorithm can no longer be applied, how-
ever, as the orthonormalization procedure described in
Section 2 will not preserve the sparsity achieved by
the �1 penalty once the solution is transformed back

http://cran.r-project.org
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to the original variables. Puig, Wiesel and Hero (2011),
Friedman, Hastie and Tibshirani (2010) and Zhou et al.
(2010) have proposed algorithms for solving this prob-
lem without requiring orthonormalization.

In principle, the group LASSO portion of the penalty
could be replaced with any of the convex 2-norm group
penalties of Section 2.2; likewise the �1 penalty could
be replaced by, say, MCP or SCAD. These possibili-
ties, to the best of our knowledge, have not been ex-
plored. Further work is needed to study the properties
of this class of estimators and compare their perfor-
mance with other methods.

3.4 Example: Genetic Association

We now give an example from a genetic associa-
tion study where bi-level selection is an important goal
of the study. The example involves data from a case-
control study of age-related macular degeneration con-
sisting of 400 cases and 400 controls, and was analyzed
in Breheny and Huang (2009). The analysis is confined
to 30 genes containing 532 markers that previous bio-
logical studies have suggested may be related to the
disease.

We analyze the data with the group LASSO, 1-norm
group bridge and composite MCP methods by consid-
ering markers to be grouped by the gene they belong to.
Penalized logistic regression models were fit assuming
an additive effect for all markers (homozygous domi-
nant = 2, heterozygous = 1, homozygous recessive =
0). In addition to the group penalization methods, we
analyzed these data using a traditional one-at-a-time
approach (single-marker analysis), in which univari-
ate logistic regression models were fit and marker ef-
fects screened using a p < 0.05 cutoff. Ten-fold cross-
validation was used to select λ, and to assess accuracy
(for the one-at-a-time approach, predictions were made
from an unpenalized logistic regression model fit to the
training data using all the markers selected by individ-
ual testing). The results are presented in Table 1.

Table 1 suggests the benefits of using group penal-
ization regression approaches as opposed to one-at-a-
time approaches: the three group penalization methods
achieve lower test error rates and do so while select-
ing fewer genes (groups). Although the error rates of
≈40% indicate that these 30 genes likely do not in-
clude SNPs that exert a large effect on an individual’s
chances of developing age-related macular degenera-
tion, the fact that they are well below the 50% that
would be expected by random chance demonstrates
that these genes do contain SNPs related to the dis-
ease. The very different nature of the selection proper-
ties of the three group penalization methods are also

TABLE 1
Application of the three group penalization methods and a

one-at-a-time method to a genetic association data set. CV error is
the average number of misclassification errors over the ten

validation folds

Genes Markers Cross-validation
selected selected error

One-at-a-time 19 49 0.441
Group LASSO 17 435 0.390
Group bridge 3 20 0.400
Composite MCP 8 11 0.391

clearly seen. Although group LASSO achieves low
misclassification error, it selects 17 genes out of 30 and
435 markers out of 532, failing to shed light on the
most important genetic markers. The bi-level selection
methods achieve comparable error rates with a much
more sparse set of predictors: group bridge identifies 3
promising genes out of 30 candidates, and composite
MCP identifies 11 promising SNPs out of 532.

4. ORACLE PROPERTY OF THE 2-NORM GROUP
MCP

In this section, we look at the selection properties of
the 2-norm group MCP estimator β̂(λ, γ ), defined as
the global minimizer of (2.3) with cj = √

dj , when ρ

is taken to be the MCP penalty. We provide sufficient
conditions under which the 2-norm group MCP esti-
mator is equal to the oracle least squares estimator de-
fined at (4.1) below. Our intention is to give some pre-
liminary theoretical justification for this concave group
selection method under reasonable conditions, not nec-
essarily to obtain the best possible theoretical results or
to provide a systematic treatment of the properties of
the concave group selection methods discussed in this
review.

Let X = (X1, . . . ,XJ ) and � = X′X/n. For any
A ⊆ {1, . . . , J }, denote

XA = (Xj , j ∈ A), �A = X′
AXA/n.

Let the true value of the regression coefficients be
βo = (βo′

1 , . . . ,βo′
J )′. Let S = {j :‖βo

j‖2 �= 0,1 ≤ j ≤
J }, which is the set of indices of the groups with
nonzero coefficients in the underlying model. Let βo∗ =
min{‖βo

j‖2/
√

dj : j ∈ S} and set βo∗ = ∞ if S is empty.
Define

β̂
o = argmin

b

{‖y − Xb‖2
2 : bj = 0 ∀j /∈ S}.(4.1)
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This is the oracle least squares estimator. Of course, it
is not a real estimator, since the oracle set is unknown.

Let dmax = max{dj : 1 ≤ j ≤ J } and dmin =
min{dj : 1 ≤ j ≤ J }. For any A ⊆ {1, . . . , J }, denote
dmin(A) = min{dj : j ∈ A} and dmax(A) = max{dj : j ∈
A}. Here dmin(A) = ∞ if A is empty. Let cmin be the
smallest eigenvalue of �, and let c1 and c2 be the
smallest and largest eigenvalues of �S , respectively.

We first consider the case where the 2-norm group
MCP objective function is convex. This necessarily re-
quires cmin > 0. Define the function

h(t, k) = exp
(−k

(√
2t − 1 − 1

)2
/4

)
,

(4.2)
t > 1, k = 1,2, . . . .

This function arises from an upper bound for the
tail probabilities of chi-square distributions given in
Lemma A.1 in the Appendix, which is based on an ex-
ponential inequality for chi-square random variables of
Laurent and Massart (2000). Let

η1n(λ) = (J − |S|)h(
λ2n/σ 2, dmin(S

c)
)

(4.3)

and

η2n(λ) = |S|h(
c1n(βo∗ − γ λ)2/σ 2, dmin(S)

)
.(4.4)

THEOREM 4.1. Suppose ε1, . . . , εn are indepen-
dent and identically distributed as N(0, σ 2). Then for
any (λ, γ ) satisfying γ > 1/cmin, βo∗ > γλ and nλ2 >

σ 2, we have

P
(
β̂(λ, γ ) �= β̂

o) ≤ η1n(λ) + η2n(λ).

The proof of this theorem is given in the Appendix.
It provides an upper bound on the probability that
β̂(λ, γ ) is not equal to the oracle least squares es-
timator. The condition γ > 1/cmin ensures that the
2-norm group MCP criterion is strictly convex. This
implies β̂(λ, γ ) is uniquely characterized by the
Karush–Kuhn–Tucker conditions. The condition nλ2 >

σ 2 requires that λ cannot be too small.
Let

λn = σ
(
2 log(max{J − |S|,1})

/(ndmin(S
c))

)1/2 and(4.5)

τn = σ
√

2 log(max{|S|,1})/(nc1dmin(S)).

The following corollary is an immediate conse-
quence of Theorem 4.1.

COROLLARY 4.1. Suppose that the conditions of
Theorem 4.1 are satisfied. Also suppose that βo∗ ≥ γ λ+
anτn for an → ∞ as n → ∞. If λ ≥ anλn, then

P
(
β̂(λ, γ ) �= β̂

o) → 0 as n → ∞.

By Corollary 4.1, the 2-norm group MCP estima-
tor behaves like the oracle least squares estimator with
high probability. This of course implies it is group se-
lection consistent. For the standard LASSO estimator,
a sufficient condition for its sign consistency is the
strong irrepresentable condition (Zhao and Yu, 2006).
Here a similar condition holds automatically due to the
form of the MCP. Specifically, let βo

S = (βo′
j : j ∈ S)′.

Then an extension of the irrepresentable condition to
the present setting is, for some 0 < δ < 1,

max
j /∈S

‖X′
jXS(X′

SXS)−1ρ̇(βo
S;λ,γ )/λ‖2

(4.6)
≤ 1 − δ,

where ρ̇(βo
S;λ,γ ) = (ρ̇(‖βo

j‖2;√
djλ, γ )βo′

j /‖βo
j‖2 :

j ∈ S)′ with

ρ̇
(‖βo

j‖2;
√

djλ, γ
) = λ

(
1 − ‖βo

j‖2/
(√

djγ λ
))

+.

Since it is assumed that minj∈S ‖βo
j‖2/

√
dj > γλ, we

have ρ̇(‖βo
j‖2;√

djλ, γ ) = 0 for all j ∈ S. Therefore,
(4.6) always holds.

We now consider the high-dimensional case where
J > n. We require the sparse Riesz condition, or SRC
(Zhang and Huang, 2008), which is a form of sparse
eigenvalue condition. We say that X satisfies the SRC
with rank d∗ and spectrum bounds {c∗, c∗} if

0 < c∗ ≤ ‖XAu‖2
2/n ≤ c∗ < ∞

(4.7)
∀A with |A| ≤ d∗,‖u‖2 = 1.

We refer to this condition as SRC(d∗, c∗, c∗).
Let K∗ = (c∗/c∗) − (1/2), m∗ = K∗|S| and ξ =

1/(4c∗ds), where ds = max{dmax(S),1}. Define

η3n(λ) = (J − |S|)m∗ em∗

m
m∗∗

(4.8)
· h(ξnλ2σ−2/dmax,m∗dmax).

Let η1n and η2n be as in (4.3) and (4.4).

THEOREM 4.2. Suppose ε1, . . . , εn are indepen-
dent and identically distributed as N(0, σ 2), and
X satisfies the SRC(d∗, c∗, c∗) in (4.7) with d∗ ≥
(K∗ +1)|S|ds . Then for any (λ, γ ) satisfying βo∗ > γλ,
nλ2ξ > σ 2dmax and γ ≥ c−1∗

√
4 + (c∗/c∗), we have

P
(
β̂(λ, γ ) �= β̂

o) ≤ η1n(λ) + η2n(λ) + η3n(λ).

Letting

λ∗
n = 2σ

√
2c∗ds log(J − |S|)/n
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and τn be as in (4.5), Theorem 4.2 has the following
corollary.

COROLLARY 4.2. Suppose the conditions of The-
orem 4.2 are satisfied. Also suppose βo∗ ≥ γ λ + anτn

for an → ∞ as n → ∞. Then if λ ≥ anλ
∗
n,

P
(
β̂(λ, γ ) �= β̃

o) → 0 as n → ∞.

Theorem 4.2 and Corollary 4.2 provide sufficient
conditions for the selection consistency of the global
2-norm group MCP estimator in the J � n situations.
For example, we can have J −|S| = exp{o(n/(c∗ds))}.
The condition nλ2ξ > σ 2dmax is stronger than the cor-
responding condition nλ2 > σ 2 in Theorem 4.1. The
condition γ ≥ c−1∗

√
4 + (c∗/c∗) ensures that the group

MCP criterion is convex in any d∗-dimensional sub-
space. It is stronger than the minimal sufficient con-
dition γ > 1/c∗ for convexity in d∗-dimensional sub-
spaces. These reflect the difficulty and extra efforts
needed in reducing a p-dimensional problem to a d∗-
dimensional problem. The SRC in (4.7) guarantees that
the model is identifiable in a lower d∗-dimensional
space.

The results presented above are concerned with the
global solutions. The properties of the local solutions,
such as those produced by the group coordinate descent
algorithm, to concave 2-norm or 1-norm penalties re-
main largely unknown in models with J � n. An in-
teresting question is under what conditions the local
solutions are equal to or sufficiently close to the global
solutions so that they are still selection consistent. In
addition, the estimation and prediction properties of
these solutions have not been studied. We expect that
the methods of Zhang and Zhang (2011) in studying
the properties of concave regularization will be helpful
in group and bi-level selection problems.

5. APPLICATIONS

We now give a review of some applications of the
group selection methods in several statistical modeling
and analysis problems, including nonparametric addi-
tive models, semiparametric partially linear models,
seemingly unrelated regressions and multi-task learn-
ing and genetic and genomic data analysis.

5.1 Nonparametric Additive Models

Let (yi,xi ), i = 1, . . . , n be random vectors that
are independently and identically distributed as (y,x),
where y is a response variable, and x = (x1, . . . , xp)′

is a p-dimensional covariate vector. The nonparamet-
ric additive model (Hastie and Tibshirani, 1990) posits
that

yi = μ +
p∑

j=1

fj (xij ) + εi, 1 ≤ i ≤ n,(5.1)

where μ is an intercept term, xij is the j th compo-
nent of xi , the fj ’s are unknown functions and εi is
an unobserved random variable with mean zero and
finite variance σ 2. Suppose that some of the addi-
tive components fj are zero. The problem is to se-
lect the nonzero components and estimate them. Lin
and Zhang (2006) proposed the component selection
and smoothing operator (COSSO) method that can be
used for selection and estimation in (5.1). The COSSO
can be viewed as a group LASSO procedure in a re-
producing kernel Hilbert space. For fixed p, they stud-
ied the rate of convergence of the COSSO estimator in
the additive model. They also showed that, in the spe-
cial case of a tensor product design, the COSSO cor-
rectly selects the non-zero additive components with
high probability. Zhang and Lin (2006) considered the
COSSO for nonparametric regression in exponential
families. Meier, van de Geer and Bühlmann (2009)
proposed a variable selection method in (5.1) with
p � n that is closely related to the group LASSO.
They give conditions under which, with high proba-
bility, their procedure selects a set of the nonparamet-
ric components whose distance from zero in a certain
metric exceeds a specified threshold under a compat-
ibility condition. Ravikumar et al. (2009) proposed a
penalized approach for variable selection in (5.1). In
their theoretical results on selection consistency, they
assume that the eigenvalues of a “design matrix” be
bounded away from zero and infinity, where the “de-
sign matrix” is formed from the basis functions for
the nonzero components. Another critical condition re-
quired in their paper is similar to the irrepresentable
condition of Zhao and Yu (2006). Huang, Horowitz
and Wei (2010) studied the group LASSO and adap-
tive group LASSO for variable selection in (5.1) based
on a spline approximation to the nonparametric com-
ponents. With this approximation, each nonparamet-
ric component is represented by a linear combination
of spline basis functions. Consequently, the problem
of component selection becomes that of selecting the
groups of coefficients in the linear combinations. They
provided conditions under which the group LASSO se-
lects a model whose number of components is com-
parable with the underlying model, and the adaptive
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group LASSO selects the nonzero components cor-
rectly with high probability and achieves the optimal
rate of convergence.

5.2 Structure Estimation in Semiparametric
Regression Models

Consider the semiparametric partially linear model
(Engle et al., 1986)

yi = μ + ∑
j∈S1

βjxij

(5.2)
+ ∑

j∈S2

fj (xij ) + εi, 1 ≤ i ≤ n,

where S1 and S2 are mutually exclusive and comple-
mentary subsets of {1, . . . , p}, {βj : j ∈ S1} are regres-
sion coefficients of the covariates with indices in S1

and (fj : j ∈ S2) are unknown functions. The most im-
portant assumption in the existing methods for the es-
timation in partially linear models is that S1 and S2

are known a priori. This assumption underlies the con-
struction of the estimators and investigation of their
theoretical properties in the existing methods (Härdle,
Liang and Gao, 2000; Bickel et al., 1993). However, in
applied work, it is rarely known in advance which co-
variates have linear effects and which have nonlinear
effects. Recently, Zhang, Cheng and Liu (2011) pro-
posed a method for determining the zero, linear and
nonlinear components in partially linear models. Their
method is a regularization method in the smoothing
spline ANOVA framework that is closely related to
the COSSO. They obtained the rate of convergence of
their proposed estimator. They also showed that their
method is selection consistent in the special case of ten-
sor product design. But their approach requires tuning
of four penalty parameters, which may be difficult to
implement in practice. Huang, Wei and Ma (2011) pro-
posed a semiparametric regression pursuit method for
estimating S1 and S2. They embedded partially linear
models into model (5.1). By approximating the non-
parametric components using spline series expansions,
they transformed the problem of model specification
into a group variable selection problem. They then used
the 2-norm group MCP to determine the linear and
nonlinear components. They showed that, under suit-
able conditions, the proposed approach is consistent in
estimating the structure of (5.2), meaning that it can
correctly determine which covariates have a linear ef-
fect and which do not with high probability.

5.3 Varying Coefficient Models

Consider the linear varying coefficient model

yi(tij ) =
p∑

k=1

xik(tij )βk(tij ) + εi(tij ),

i = 1, . . . , n, j = 1, . . . , ni ,

where yi(t) is the response variable for the ith sub-
ject at time point t ∈ T with T being the time interval
on which the measurements are taken, εi(t) is the er-
ror term, xik(t)’s are time-varying covariates, βk(t) is
the corresponding smooth coefficient function. Such a
model is useful in investigating the time-dependent ef-
fects of covariates on responses measured repeatedly.
One well-known example is longitudinal data analy-
sis (Hoover et al., 1998) where the response for the
ith experimental subject in the study is observed ni

occasions, the set of observations at times {tij : j =
1, . . . , ni} tends to be correlated. Another important ex-
ample is the functional response models (Rice, 2004),
where the response yi(t) is a smooth real function,
although only yi(tij ), j = 1, . . . , ni are observed in
practice. Wang, Chen and Li (2007) and Wang and
Xia (2009) considered the use of group LASSO and
SCAD methods for model selection and estimation in
(5.3). Xue, Qu and Zhu (2010) applied the 2-norm
SCAD method for variable selection in generalized lin-
ear varying-coefficient models and considered its se-
lection and estimation properties. These authors ob-
tained their results in the models with fixed dimen-
sions. Wei, Huang and Li (2011) studied the properties
of the group LASSO and adaptive group LASSO for
(5.3) in the p � n settings. They showed that, under
the sparse Riesz condition and other regularity condi-
tions, the group LASSO selects a model of the right
order of dimensionality, selects all variables with coef-
ficient functions whose �2 norm is greater than a cer-
tain threshold level and is estimation consistent. They
also proved that the adaptive group LASSO can cor-
rectly select important variables with high probability
based on an initial consistent estimator.

5.4 Seemingly Unrelated Regressions and
Multi-Task Learning

Consider T linear regression models

yt = Xtβ t + εt , t = 1, . . . , T ,

where yt is an n × 1 response vector, Xt is an n × p

design matrix, β t is a p × 1 vector of regression co-
efficients and εt is an n × 1 error vector. Assume that
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ε1, . . . ,εT are independent and identically distributed
with mean zero and covariance matrix �. This model
is referred to as the seemingly unrelated regressions
(SUR) model (Zellner, 1962). Although each model
can be estimated separately based on least squares
method, it is possible to improve on the estimation ef-
ficiency of this approach. Zellner (1962) proposed a
method for estimating all the coefficients simultane-
ously that is more efficient than the single-equation
least squares estimators. This model is also called a
multi-task learning model in machine learning (Caru-
ana, 1997; Argyriou, Evgeniou and Pontil, 2008).

Several authors have considered the problem of vari-
able selection based on the criterion

1

2T

T∑
t=1

1

n
‖yt − Xtβ t‖2

2 + λ

p∑
j=1

(
T∑

t=1

β2
tj

)1/2

.

This is a special case of the general group LASSO
criterion. Here the groups are formed by the coeffi-
cients corresponding to the j th variable across the re-
gressions. The assumption here is that the j th variable
plays a similar role across the tasks and should be se-
lected or dropped at the same time. Several authors
have studied the selection, estimation and prediction
properties of the group LASSO in this model; see, for
example, Bach (2008), Lounici et al. (2009), Lounici
et al. (2011) and Obozinski, Wainwright and Jordan
(2011) under various conditions on the design matri-
ces and other regularity conditions.

5.5 Analysis of Genomic Data

Group selection methods have important applica-
tions in the analysis of high throughput genomic data—
for example, to find genes and genetic pathways that
affect a clinical phenotype such as disease status or sur-
vival using gene expression data. Most phenotypes are
the result of alterations in a limited number of path-
ways, and there is coordination among the genes in
these pathways. The genes in the same pathway or
functional group can be treated as a group. Efficiency
may be improved upon by incorporating pathway in-
formation into the analysis, thereby selecting pathways
and genes simultaneously. Another example is inte-
grative analysis of multiple genomic datasets. In gene
profiling studies, markers identified from analysis of
single datasets often suffer from a lack of reproducibil-
ity. Among the many possible causes, the most impor-
tant one is perhaps the relatively small sample sizes
and hence lack of power of individual studies. A cost-
effective remedy to the small sample size problem is

to pool and analyze data from multiple studies of the
same disease. A generalized seemingly unrelated re-
gressions model can be used in this context, where a
group structure arises naturally for the multiple mea-
surements for the same gene across the studies. Some
examples of using group selection methods in these ap-
plications include Wei and Li (2007), Jacob, Obozinski
and Vert (2009), Ma and Huang (2009), Ma, Huang
and Moran (2009), Ma, Huang and Song (2010), Ma
et al. (2011), Pan, Xie and Shen (2010) and Peng et al.
(2010), among others.

5.6 Genome Wide Association Studies

Genome wide association studies (GWAS) are an
important method for identifying disease susceptibil-
ity genes for common and complex diseases. GWAS
involve scanning hundreds to thousands of samples, of-
ten as case-control samples, utilizing hundreds of thou-
sands of single nucleotide polymorphism (SNP) mark-
ers located throughout the human genome. The SNPs
from the same gene can be naturally considered as a
group. It is more powerful to select both SNPs and
genes simultaneously than to select them separately.
Applications of group selection methods to genetic as-
sociation analysis are discussed in Breheny and Huang
(2009) and Zhou et al. (2010).

6. DISCUSSION

In this article, we provide a selective review of sev-
eral group selection and bi-level selection methods.
While considerable progress has been made in this
area, much work remains to be done on a number
of important issues. Here we highlight some of them
that require further study in order to better apply these
methods in practice.

6.1 Penalty Parameter Selection

In any penalization approach for variable selection,
a difficult question is how to determine the penalty pa-
rameters. This question is even more difficult in group
selection methods. Widely used criterions, including
the AIC (Akaike, 1973) and BIC (Schwarz, 1978),
require the estimation of the error variance and de-
grees of freedom. For the group LASSO, Yuan and Lin
(2006) proposed an estimate of the degrees of freedom,
but it involves the least squares estimator of the coef-
ficients, which is not feasible in p � n models. The
problem of variance estimation has not been studied
systematically in group selection models. It is possi-
ble to use K-fold cross validation, which does not re-
quire estimating the variance or the degrees of free-
dom. However, to our knowledge, there have been no
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rigorous analyses of this procedure in group selection
settings. Recently, Meinshausen and Bühlmann (2010)
proposed stability selection for choosing penalty pa-
rameters based on resampling. This is a general ap-
proach and is applicable to the group selection methods
discussed here. Furthermore, it does not require esti-
mating the variance or the degrees of freedom. It would
be interesting to apply this method to group selection
and compare it with the existing methods in group se-
lection problems.

6.2 Theoretical Properties

Currently, most theoretical results concerning se-
lection, estimation and prediction on group selection
methods in p � n settings are derived for the group
LASSO in the context of linear regression. These re-
sults provide important insights into the behavior of the
group LASSO. However, they are obtained for a given
range of the penalty parameter. It is not clear whether,
if the penalty parameter is selected using a data-driven
procedure, such as cross validation, these results still
hold. It is clearly of practical interest to confirm the
estimation and prediction properties of group LASSO
if the penalty parameter is selected using such a pro-
cedure. For concave selection methods, we considered
the selection property of the global 2-norm group MCP
solutions. Although global results shed some light on
the properties of these methods, it is more relevant to
investigate the properties of the local solutions, such
as those obtained based on the group coordinate de-
scent algorithm. Therefore, much work is needed to
understand the theoretical properties of various con-
cave group selection methods and compare their per-
formance with the group LASSO.

6.3 Overlapping Groups

In this article, we only considered the case where
there is no overlapping among the groups. However, in
many applied problems, overlapped groups arise natu-
rally. For example, in genomic data analysis involving
genes and pathways, many important genes belong to
multiple pathways. Jacob, Obozinski and Vert (2009)
proposed an extended group LASSO method for se-
lection with overlapping groups. With their method,
it is possible to select one variable without select-
ing all the groups containing it. Percival (2011) stud-
ied the theoretical properties of the method of Jacob,
Obozinski and Vert (2009). Liu and Ye (2010) pro-
posed an algorithm for solving the overlapping group
LASSO problem. Zhao, Rocha and Yu (2009) consid-

ered the problem of overlapping groups in the context
of composite absolute penalties. The results of Huang
et al. (2009) on the selection consistency of the 1-
norm group bridge allow overlapping among groups
under the assumption that the extent of overlapping is
not large. However, in general, especially for concave
group selection methods, this question has not been ad-
dressed.

APPENDIX

LEMMA A.1. Let χ2
k be a random variable with

chi-square distribution with k degrees of freedom. For
t > 1, P(χ2

k ≥ kt) ≤ h(t, k), where h(t, k) is defined in
(4.2).

This lemma is a restatement of the exponential in-
equality for chi-square distributions of Laurent and
Massart (2000).

PROOF OF THEOREM 4.1. Since β̂
o

is the oracle
least squares estimator, we have β̂

o

j = 0 for j /∈ S and

−X′
j (y − Xβ̂

o
)/n = 0 ∀j ∈ S.(A.1)

If ‖β̂o

j‖2/
√

dj ≥ γ λ, then by the definition of the MCP,

ρ′(‖β̂o

j‖2;√
djλ, γ ) = 0. Since cmin > 1/γ , the crite-

rion (2.3) is strictly convex. By the KKT conditions,
the equality β̂(λ, γ ) = β̂

o
holds in the intersection of

the events

�1(λ) =
{
max
j /∈S

‖n−1X′
j (y − Xβ̂

o
)‖2/

√
dj

≤ λ
}

and(A.2)

�2(λ) =
{
min
j∈S

‖β̂o

j‖2/
√

dj ≥ γ λ
}
.

We first bound 1 − P(�1(λ)). Let β̂S = (β̂j , j ∈ S)′.
By (A.1) and using y = XSβo

S + ε,

β̂
o

S = �−1
S X′

Sy/n = βo
S + �−1

S X′
Sε/n.(A.3)

It follows that n−1X′
j (y − Xβ̂

o
) = n−1X′

j (In − PS)ε,

where PS = n−1XS�−1
S X′

S . Because X′
jXj = Idj

,

‖X′
j (In −PS)ε‖2

2/σ
2 is distributed as a χ2 distribution

with dj degrees of freedom. We have, for nλ2/σ 2 ≥ 1,

1 − P(�1(λ))

= P
(
max
j /∈S

‖n−1/2X′
j (In − PS)ε‖2

2/(djσ
2)

> nλ2/σ 2
)
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≤ ∑
j /∈S

P
(‖n−1/2X′

j (In − PS)ε‖2
2/σ

2

(A.4)
> djnλ2/σ 2)

≤ ∑
j /∈S

h(nλ2/σ 2, dj )

≤ (J − |S|)h(
nλ2/σ 2, dmin(S

c)
)

= η1n(λ),

where we used Lemma A.1 in the third line.
Now consider �2. Recall βo∗ = minj∈S ‖βo

j‖2/
√

dj .

If ‖β̂o

j − βo
j‖2/

√
dj ≤ βo∗ − γ λ for all j ∈ S, then

minj∈S ‖β̂o

j‖2/
√

dj ≥ γ λ. This implies

1 − P(�2(λ)) ≤ P
(
max
j∈S

‖β̂o

j − βo
j‖2/

√
dj > βo∗ − γ λ

)
.

Let Aj be a dj × dS matrix with a dj × dj identity
matrix Idj

in the j th block and 0’s elsewhere. Then

n1/2(β̂
o

j − βo
j ) = n−1/2Aj�

−1
S X′

Sε. Note that

‖n−1/2Aj�
−1
S X′

Sε‖2

≤ ‖Aj‖2‖�−1/2
S ‖2‖n−1/2�

−1/2
S X′

Sε‖2

≤ c
−1/2
1 ‖n−1/2�

−1/2
S X′

Sε‖2

and ‖n−1/2�
−1/2
S X′

Sε‖2
2/σ

2 is distributed as a χ2 dis-
tribution with |S| degrees of freedom. Therefore, simi-
lar to (A.4), we have, for c1n(βo∗ − γ λ)2/σ 2 > 1,

1 − P(�2(λ))

= P
(
max
j∈S

n−1/2‖Aj�
−1
S X′

Sε‖2/
√

dj

>
√

n(βo∗ − γ λ)
)

≤ P
(
max
j∈S

‖n−1/2�
−1/2
S X′

Sε‖2
2/(djσ

2)(A.5)

> c1n(βo∗ − γ λ)2/σ 2
)

≤ |S|h(
c1n(βo∗ − γ λ)2/σ 2, dmin(S)

)
= η2n(λ).

Combining (A.4) and (A.5), we have

P
(
β̂(λ, γ ) �= β̂

o) ≤ 1 − P(�1(λ)) + 1 − P(�2(λ))

≤ η1n(λ) + η2n(λ).

This completes the proof. �

For any B ⊂ {1, . . . , J } and m ≥ 1, define

ζ(υ;m,B)

= max
{‖(PA − PB)υ‖2

(mn)1/2 :(A.6)

B ⊆ A ⊆ {1, . . . , J }, dA = m + dB

}
for υ ∈ R

n, where PA = XA(X′
AXA)−1X′

A is the or-
thogonal projection from R

n to the span of XA.

LEMMA A.2. Suppose ξnλ2 > σ 2dmax. We have

P
(
2
√

c∗dsζ(y;m,S) > λ
)

≤ (J − |S|)m em

mm
exp(−mξnλ2/16).

PROOF. For any A ⊇ S, we have (PA − PS) ·
XSβS = 0. Thus

(PA − PS)y = (PA − PAS
)(XSβS + ε) = (PA − PS)ε.

Therefore,

P
(
2
√

c∗dsζ(y;m,S) > λ
)

= P
(

max
A⊇S,|A|−|S|=m

‖(PA − PS)ε‖2/σ 2 > ξmnλ2
)
.

Since PA − PS is a projection matrix, ‖(PA − PS)ε‖2/

σ 2 ∼ χ2
mA

, where mA = ∑
j∈A−S,A⊇S dj ≤ mdmax.

Since there are
(J−|S|

m

)
ways to choose A from {1,

. . . , J }, we have

P
(
2
√

c∗dsζ(y;m,S) > λ
)

≤
(
J − |S|

m

)
P(χ2

mdmax
> ξmnλ2).

This and Lemma A.1 imply that

P
(
2
√

c∗dsζ(y;m,S) > λ
)

≤
(
J − |S|

m

)
h(ξnλ2/dmax,mdmax)

≤ (J − |S|)m em

mm
h(ξnλ2/dmax,mdmax).

Here we used the inequality
(J−|S|

m

) ≤ em(J − |S|)m/

mm. This completes the proof. �
Define T as any set that satisfies

S ∪ {j :‖β̂j‖2 �= 0}
⊆ T ⊆ S ∪ {

j :n−1X′
j (y − Xβ̂)

= ρ̇
(‖β̂j‖2;

√
djλ, γ

)
·
√

dj β̂j /‖β̂j‖2
}
.
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LEMMA A.3. Suppose that X satisfies the
SRC(d∗, c∗, c∗), d∗ ≥ (K∗ + 1)|S|ds , and γ ≥ c−1∗ ·√

4 + c∗/c∗. Let m∗ = K∗|S|. Then for any y ∈ R
n with

λ ≥ 2
√

c∗dsζ(y;m∗, S), we have

|T | ≤ (K∗ + 1)|S|.
PROOF. This lemma can be proved along the line

of the proof of Lemma 1 of Zhang (2010a) and is omit-
ted. �

PROOF OF THEOREM 4.2. By Lemma A.3, in the
event

2
√

c∗dmax(S)ζ(y;m∗, S) ≤ λ,(A.7)

we have |T | ≤ (K∗ + 1)|S|. Thus in event (A.7), the
original model with J groups reduces to a model with
at most (K∗ + 1)|S| groups. In this reduced model, the
conditions of Theorem 4.2 imply that the conditions of
Theorem 4.1 are satisfied. By Lemma A.2,

P
(
2
√

c∗dmax(S)ζ(y;m∗, S) > λ
) ≤ η3n(λ).(A.8)

Therefore, combining (A.8) and Theorem 4.1, we have

P
(
β̂(λ, γ ) �= β̂

o) ≤ η1n(λ) + η2n(λ) + η3n(λ).

This proves Theorem 4.2. �
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