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SUMMARY

Penalized regression methods are an attractive tool for high-dimensional data analysis, but their widespread
adoption has been hampered by the difficulty of applying inferential tools. In particular, the question “How
reliable is the selection of those features?” has proved difficult to address. In part, this difficulty arises from
defining false discoveries in the classical, fully conditional sense, which is possible in low dimensions
but does not scale well to high-dimensional settings. Here, we consider the analysis of marginal false
discovery rates (mFDRs) for penalized regression methods. Restricting attention to the mFDR permits
straightforward estimation of the number of selections that would likely have occurred by chance alone,
and therefore provides a useful summary of selection reliability. Theoretical analysis and simulation
studies demonstrate that this approach is quite accurate when the correlation among predictors is mild,
and only slightly conservative when the correlation is stronger. Finally, the practical utility of the proposed
method and its considerable advantages over other approaches are illustrated using gene expression data
from The Cancer Genome Atlas and genome-wide association study data from the Myocardial Applied
Genomics Network.
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1. INTRODUCTION

Penalized regression is an attractive methodology for dealing with high-dimensional data where classical
likelihood approaches to modeling break down. However, its widespread adoption has been hindered by
a lack of inferential tools. In particular, penalized regression is very useful for variable selection, but how
confident one may be about those selections has proven difficult to quantify. As we will see, this difficulty
is partially due to the complexity of defining a “false discovery” in the penalized regression setting. In
this article, I will focus mainly on the lasso for linear regression models (Tibshirani, 1996), although the
idea is very general and can be extended to a variety of other regression models and penalty functions.
In particular, suppose we use the lasso to select variables from a pool of potentially important features.
This article addresses the question, “How many of those selections would likely have occurred by chance
alone?”

There has been a fair amount of recent work on the idea of hypothesis testing in the high-dimensional
penalized regression setting. A comprehensive review is beyond the scope of this article, but it is worth
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300 P. J. BREHENY

introducing two approaches to which I will compare the method proposed in this article. One approach is to
split the sample into two parts, using the first part for variable selection and the second part for hypothesis
testing. This idea was first introduced in Wasserman and Roeder (2009), who studied the problem using a
single split of the dataset. Meinshausen and others (2009) extended this approach by considering multiple
random splits and combining the results. Dezeure and others (2015) provide a comprehensive review of
this approach and the details involved, along with procedures for limiting the overall false discovery rate
through this form of testing.

An alternative approach is to test the significance of adding a variable along the solution path as the
degree of penalization is relaxed, conditional on the other variables already included in the model. Several
tests fall into this category, including the covariance test (Lockhart and others, 2014), the spacing test, and
an exact test (Tibshirani and others, 2016, which also introduces the spacing test). The details of the tests
differ, but all involve modifying classical tests for the significance of an added variable by conditioning on
the fact that the added variable was not prespecified, but rather selected from a pool of potential variables.
G’Sell and others (2016) provide an important extension to this work by deriving a rule, forwardStop, for
selecting the stopping point along this sequence of sequential tests to preserve a specified false discovery
rate.

False discoveries are straightforward to define in single-variable hypothesis testing: a false discovery is
one that is independent of the outcome. In regression models, however, this idea is complicated by various
kinds of conditional independence. Typically, in regression a feature Xj is considered a false discovery if
it is independent of the outcome Y given all other features; symbolically, if Xj ⊥⊥ Y |{Xk}k �=j. This is the
perspective adopted by most work in this area, including sample splitting; here, we will refer to this as the
fully conditional perspective. The pathwise approaches use a different definition, which we will call the
pathwise conditional perspective. Letting Mj denote the set of variables with non-zero coefficients in the
model at the point in the path where feature j is selected, in these approaches a feature j is considered a
false discovery if Xj ⊥⊥ Y |{Xk : k ∈ Mj}.

This article introduces a weaker definition of false discovery than those considered in the existing liter-
ature. Rather than the conditional definitions given in the previous paragraph, here we consider a marginal
perspective in which a selected feature j is false if it is marginally independent of the outcome, the defi-
nition used in single-feature testing: Xj ⊥⊥ Y . Adopting a simpler definition makes it possible to estimate
the expected number of false discoveries as well as their rate, which we call the marginal false discovery
rate (mFDR). Our goal here is not to argue that the mFDR is always superior to either of the conditional
FDRs; clearly, there are times where a conditional FDR is an important quantity of interest. However, the
mFDR is also an interesting and useful summary of feature selection accuracy. This is especially true in
high dimensions where attempting to control a conditional false discovery rate is often hopeless.

2. MARGINAL FALSE DISCOVERY RATES

Consider the linear model with normally distributed errors:

y = Xβ + ε; εi
⊥⊥∼ N(0, σ 2),

where y denotes the response and X the n × p design matrix, with n denoting the number of independent
observations and p the number of features. Without loss of generality, we assume throughout that the
response and covariates are centered so that the intercept term can be ignored, and that the features are
standardized so that 1

n

∑
i x2

ij = 1 for all j. We are interested in studying the lasso estimator β̂, defined as
the quantity that minimizes

1

2n
‖y − Xβ‖2

2 + λ ‖β‖1 , (2.1)
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Marginal false discovery rates 301

where ‖β‖1 = ∑
j |βj|. Here, the least-squares loss measures the fit of the model and the L1 norm is used

to penalize large values of β, with λ controlling the tradeoff between the two.
An appealing aspect of using the lasso to estimate β is that the resulting estimates are sparse: some

coefficients will be non-zero, but for many, β̂j = 0. In this article, we say that a feature for which β̂j �= 0
has been “selected.” Note that β̂ changes with λ although we will suppress this in the notation; for a
large enough value of λ, β̂j = 0 for all j, but as we lower λ, more variables will be included. To address
the expected number of features included in a lasso model by chance alone, we begin by considering the
orthonormal case, then turn our attention to the general case.

2.1. Orthonormal case

For a given value of the regularization parameter λ, let r = y − Xβ̂ denote the residuals. The lasso (2.1)
is a convex optimization problem, so the Karush–Kuhn–Tucker (KKT) conditions are both necessary and
sufficient for any solution β̂:

1

n
x′

jr = λ sign(β̂j) for all β̂j �= 0

1

n

∣∣x′
jr

∣∣ ≤ λ for all β̂j = 0.

Letting X−j and β−j denote the portions of the design matrix and coefficient vector that remain after
removing the jth feature, let rj = y − X−jβ̂−j denote the partial residuals with respect to feature j. The
KKT conditions thus imply that

1

n

∣∣x′
jrj

∣∣ > λ for all β̂j �= 0

1

n

∣∣x′
jrj

∣∣ ≤ λ for all β̂j = 0

(2.2)

and therefore the probability that variable j is selected is

P(β̂j �= 0) = P

(
1

n

∣∣x′
jrj

∣∣ > λ

)
.

This indicates that if we are able to characterize the distribution of 1
n x′

jrj under the null, we can estimate
the number of false discoveries in the model. Indeed, this is straightforward in the case of orthonormal
design ( 1

n X′X = I):

1

n
x′

jrj = 1

n
x′

j(y − Xβ + X−jβ−j + xjβj − X−jβ̂−j)

= 1

n
x′

jε + βj

∼ N (βj, σ 2/n).

(2.3)

Thus, if βj = 0, we have

P

(
1

n

∣∣x′
jrj

∣∣ > λ

)
= 2�(−λ

√
n/σ).
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These results are related to the expected number of false discoveries in the following theorem, the proof
of which follows directly from the above by summing P(β̂j �= 0) over the set of null variables.

THEOREM 2.1 Suppose 1
n X′X = I. Then, letting S = {j : β̂j �= 0} denote the set of selected features and

N = {j : βj = 0} the set of null features, for any value of λ, we have

E |S ∩ N | = 2 |N | �(−λ
√

n/σ).

To use this as an estimate, the unknown quantities |N | and σ 2 must be estimated. One straightforward
possibility is to replace |N | by p and estimate the variance σ 2 by

σ̂ 2 = r′r
n − |S| .

Dividing the residual sum of squares by the degrees of freedom of the lasso (Zou and others, 2007) is a
simple approach for estimating the residual variance, but other possibilities exist (e.g., Fan and others,
2012). This implies the following estimate for the expected number of false discoveries:

F̂D = 2p�(−√
nλ/σ̂ ) (2.4)

and, as an estimate of the false discovery rate:

F̂DR = F̂D
|S| ; (2.5)

note that this estimate will be somewhat conservative, as we are replacing |N | by its upper bound, p,
rather than attempting to estimate it.

This straightforward estimate of the false discovery rate is made possible by the orthonormality con-
dition assumed in (2.3). When the features that comprise X are correlated, however, the distribution of
1
n x′

jrj is considerably more complex, as is the proper definition of what is meant by a “false discovery.”
Nevertheless, as the rest of this article will show, with a suitable definition of false discovery, estima-
tor (2.5) can still be used to estimate false discovery rates for variable selection in non-orthonormal
settings.

2.2. Definition in the general case

Consider the causal diagram presented below. In this situation, variable A could never be considered
a false discovery: it has a direct causal relationship with the outcome Y . Likewise, if variable N were
selected, this would obviously count as a false discovery – N has no relationship, direct or indirect, to the
outcome.

A

Y

B

N

Variable B, however, occupies a gray area as far as false discoveries are concerned. From a marginal
perspective, B would not be considered a false discovery, since it is not independent of Y . However, B
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Marginal false discovery rates 303

and Y are conditionally independent given A, so from a fully conditional regression perspective, B is a
false discovery. Lastly, from a pathwise conditional perspective, B may or may not be a false discovery,
depending on whether A is already included in the model or not at the point at which B enters.

The central argument of this article is that estimating the number of false selections arising from
variables like B is inherently complicated and requires complex approaches; however, simple approaches
like the one derived in Section 2.1 may still be used to estimate the number of false selections arising from
variables like N .

Here, I define a noise feature to be a variable like N , that has no causal path (direct or indirect) between
it and the outcome, and the mFDR as the proportion of selected features that are noise features. Again,
this is consistent with how false discoveries are defined in univariate testing, but differs from the existing
literature in regression modeling.

It is worth addressing a technical point here: it is possible for two variables to be conditionally dependent
despite being marginally independent. Such a relationship would appear in a directed acyclic graph as the
following:

X1

X2

Y

As the figure indicates, such a relationship would require a feature (or features) to be caused by the
outcome Y . This is contrary to the usual framework in which regression models are applied, where Y is
(or is assumed to be) a consequence of the features used for prediction (e.g., a genetic variant can lead to
heart disease, but heart disease will not change an individual’s genetic sequence). Thus, although we are
actually making a stronger assumption than mere marginal independence here, in the typical regression
setting the two are equivalent. At any rate, although the term may be slightly imprecise from a technical
perspective, we feel that the name “marginal false discovery” is easily understood and best distinguishes
this quantity from false discoveries under the various conditional perspectives.

The proposed definition has several advantages. First, when two variables (like A and B in the first
diagram) are correlated, it is often difficult to distinguish between which of them is driving changes in Y
and which is merely correlated withY. As we will see, this causes methods using a conditional perspective
to be conservative, especially in high dimensions.

Second, in many scientific applications, discovering variables like B is not particularly problematic. For
example, two genetic variants in close proximity to each other on a chromosome will be highly correlated.
Although it is obviously desirable to identify which of the two is the causal variant, locating a nearby
variant is also scientifically valuable, as it narrows the search to a small region of the genome for future
follow-up studies.

The final advantage is clarity of interpretation. Whether or not a feature would qualify as a marginal
false discovery depends only on the relationship between it and the outcome, not on whether another
feature has been included in the model. In contrast, interpreting the results from pathway-based tests
such as those in Lockhart and others (2014) and Tibshirani and others (2016) can be challenging, as the
definition of the null hypothesis is constantly changing with λ.

3. INDEPENDENT NOISE FEATURES

The orthonormal conditions of Section 2.1 clearly do not hold in most settings for which penalized
regression is typically used. Thankfully, they can be relaxed in two important ways that make the results
more widely applicable. First, the predictors do not have to be strictly orthogonal in order for the estimator
to work; they can simply be uncorrelated. Second, this condition of being uncorrelated applies only to the
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304 P. J. BREHENY

noise features—i.e., the variables like N in the diagram from Section 2.1; variables like A and B can have
any correlation structure. These statements are justified theoretically in Section 3.1 and via simulation
in 3.2.

3.1. Theory

To make these statements concrete, let A, N partition {1, 2, . . . , p} such that βj = 0 for all j ∈ N and the
following condition holds:

lim
n→∞

1

n
X′X =

[
�A 0
0 �N

]
.

The opening remarks of this section can now be stated precisely in the following theorem, the proof of
which appears in the Appendix.

THEOREM 3.1 Suppose �N = I. Then for any j ∈ N and for λn such that the sequence
√

nλn is bounded,

1√
n

x′
jrj

d−→ N (0, σ 2).

Theorem 3.1 shows that if the noise features are uncorrelated, then in the limit 1
n x′

jrj behaves just as
it did in Section 2.1 (equation 2.3). Thus, estimators (2.4) and (2.5) still provide approximate estimators
for the mFDR in this setting, at an accuracy that improves with the sample size. The technical condition
requiring

√
nλn to be bounded is only necessary so that the estimate β̂ will be

√
n-consistent. Without it

(i.e., for large values of λ), 1
n x′

jrj will converge to a random variable with a variance larger than σ 2 due to
underfitting. Note that Theorem 3.1 treats p as fixed; extending this result to allow p → ∞ would be of
interest as future work, but lies outside the scope of this article.

3.2. Simulation

To illustrate the consequences of Theorem 3.1, let us carry out the following simulation study, with both
a “low-dimensional” (n > p) and “high-dimensional” (n < p) component. As in Section 2.1, three types
of features will be included:

• Causative: Six variables with βj = 1

• Correlated: Each causative feature is correlated (ρ = 0.5) with m other features; m = 2 for the
low-dimensional case and m = 9 for the high-dimensional case

• Noise: Independent noise features are added to bring the total number of variables up to 60 in the
low-dimensional case and 600 in the high-dimensional case

The causative, correlated, and noise features correspond to variables A, B, and N, respectively, in the
diagram from Section 2.1. In each setting, the sample size was n = 100, while the total number of
causative/correlated/noise features was 6/12/42 for the low-dimensional setting and 6/54/540 for the
high-dimensional setting. The results of the simulation are shown in Figure 1.

As Theorem 3.1 implies, estimators (2.4) and (2.5) are quite accurate, on average, when the noise
features are independent. The estimated number of noise features selected and the mFDR are both some-
what conservative, as we would expect from using p as an upper bound for the number of noise features
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Marginal false discovery rates 305

Fig. 1. Accuracy of estimators (2.4) and (2.5) in the case of independent noise features.

(e.g., in the high-dimensional case, p = 600 but |N | = 540). However, the effect is slight in this setting.
For example, in the high-dimensional case at λ = 0.55, the actual mFDR was 5%, while the estimated
rate was 6.5%.

Being able to estimate the mFDR means we can use it to select the regularization parameter λ. For
example, we could choose λ to be the smallest value of λ such that m̂FDR(λ) < 0.1. Figure 2 compares
this approach with several other methods for selecting λ in terms of the number of each type of feature
the method selects on average. For Lasso (mFDR), univariate testing (i.e., marginal regression), sample
splitting (using the hdi package, Dezeure and others, 2015), and the exact conditional path-based test
(usinglarInf andforwardStop from theselectiveInference package, Tibshirani and others,
2016; G’Sell and others, 2016), the nominal false discovery rates were set to 10%. For cross-validation
(CV), the value of λ minimizing the CV error was selected.

It is worth noting that both Lasso (mFDR) and univariate testing limit the fraction of selections due to
noise features (to 5% and 7%, respectively, in the p = 60 simulation) to the nominal rate, but claim nothing
about the fraction arising from correlated features. This is obvious from the figure for univariate testing; for
Lasso (mFDR), the fraction of selected features coming from either the Correlated or Noise groups (i.e.,
all features with βj = 0) was 17% in the low-dimensional setting and 23% in the high-dimensional setting.

Nevertheless, compared to univariate testing, the Lasso (mFDR) approach has two major advantages,
despite using the same definition of a false discovery. First, although unable to precisely quantify the
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Fig. 2. Average number of each type of feature selected by various methods for the simulation setup in Section 3.2.
Cross-validation is omitted from the high-dimensional (p = 600) plot because of the very large number of noise
features it selects, which dominates the plot when included.

number of indirect associations that have been selected, by regressing on features directly related to the
outcome, the lasso greatly reduces the number of these associations that are identified as important. For
example, in the p = 600 case, 82% of the features identified by lasso were causally related to the outcome,
compared with just 32% for univariate testing. Second, by successfully explaining variation in the outcome
and thereby reducing noise, the lasso has greater power. For example, in the p = 60 case, the lasso is able
to identify 5.3 causative features on average, compared with 4.1 for univariate testing.

Among the penalized regression approaches, CV is a considerable outlier, with no protection against
the selection of large numbers of noise features. In the high-dimensional case, CV selected over 30 noise
features on average, and is omitted from the plot so as not to obscure the performance of the other
methods. Of course, the goals of CV are very different: to obtain the model with the best predictive
accuracy, regardless of the number of noise features it may contain.

The sample splitting and selective inference approaches, on the other hand, greatly limit the num-
ber of both noise features and correlated features selected by the lasso model. The more restrictive
definition of a false discovery used by these approaches, however, causes them to behave quite conser-
vatively, and have considerably less power to detect the causative features than any of the other methods
considered.

4. CORRELATED NOISE FEATURES

The simulation results of Section 3.2 are something of a best-case scenario for the proposed method, since
the variables in N were independent and Theorem 3.1 establishes that the estimator is consistent in this
case. As we will see, when noise features are correlated, estimator 2.5 becomes conservative. The case
of correlated noise features is significantly less mathematically tractable, making it harder to construct
a rigorous proof of this claim, but here we offer some insight into why this is true and investigate the
performance of the proposed method via simulation.
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Marginal false discovery rates 307

Fig. 3. Illustration of how correlation affects selection in the bivariate case. Features x1 and x2 are positively correlated
(ρ = 0.5) on the left and negatively correlated (ρ = −0.5) on the right.

To illustrate why the proposed mFDR estimator becomes conservative when noise features are corre-
lated, let us consider the p = 2 case. Letting zj = 1

n x′
jy, we begin by noting that z follows a multivariate

normal distribution with mean 0 and

Var(z) = σ 2

n

[
1 ρ

ρ 1

]
,

where ρ denotes the correlation between x1 and x2, and

2 |N | �(−λ
√

n/σ) = P(|z1| > λ) + P(|z2| > λ). (4.6)

A visual representation of this quantity is given in Figure 3.
The shading represents whether 0 (white), 1 (light gray), or 2 (dark gray) features will be selected under

this orthogonal approximation; the quantity in (4.6) can be found by integrating these constant regions
with respect to the joint density of z.

In the case where x1 and x2 are correlated, the white region (where no features are selected) remains the
same, but the conditions under which both features are selected (the light and dark gray regions) change.
By working through the KKT conditions for the bivariate case under various conditions, we can determine
these selection boundaries. For example, the boundary for β̂2 > 0 given that β̂1 > 0 (i.e., given that
z1 > λ) is

1
n

∣∣x′
2r2

∣∣ > λ =⇒ z2 − ρβ̂1 > λ

=⇒ z2 > ρz1 + λ(1 − ρ).

These boundaries are drawn in black on Figure 3; the preceding equation is the line just above the letter “A”.
As the figure illustrates, when ρ > 0 the region over which β1, β2 �= 0 narrows in the upper right and lower
left quadrants, and widens in the other two quadrants. Considering the difference E |S ∩ N | − {P(|z1| >

λ) + P(|z2| > λ)}, we see that in many regions, the terms cancel out. The differences lie in four pairs of
triangular regions; one such pair is labeled “A” and “B”. The region A is where two variables are selected
under orthogonality, but only one in the correlated case, while region B is where one variable is selected
under orthogonality, but two are selected in the correlated case. However, because z1 and z2 are positively
correlated in this scenario, the density at each point in A is higher than its corresponding point in B, and
therefore estimator (2.4) is conservative in the sense that it overestimates the expected number of false
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308 P. J. BREHENY

Fig. 4. Accuracy of the analytic (2.5), permute-the-outcome (“PermY”), and permute-the-residuals (“PermR”) esti-
mators in the case of correlated noise features. Left, Center: Autoregressive correlation. Right: Exchangeable
correlation.

discoveries. The opposite scenario happens for ρ < 0, where region B now has the higher probability
density, again leading to a larger value under orthogonality, with equality between the two quantities
occurring only at ρ = 0.

In terms of Theorem 3.1, this argument implies that when �N �= I, the quantity 1√
n x′

jrj converges
to a distribution with thinner tails than N(0, σ 2). Intuitively, this makes sense: if two noise features are
correlated, a regression-based method such as the lasso will tend to select a single feature rather than both.
Thus, the uncorrelated case is not just mathematically convenient, it also represents a worst-case scenario
with respect to the number of noise features that we can expect to be selected by chance alone.

To investigate the robustness of the proposed mFDR estimator in the presence of moderate correlation,
let us carry out the following simulation. The generating model contains six independent causative features
and 494 correlated noise features, with a 1:1 signal-to-noise ratio (n = 100, p = 500, R2 = 0.5). The
noise features are given an autoregressive correlation structure with Cor(xj, xk) = 0.8| j−k|. The results of
the simulation are shown in Figure 4.

Compared with Figure 1, the mFDR estimates are somewhat more conservative in this case, although
still quite accurate—certainly accurate enough to be useful in practice. For example, at λ = 0.43, the true
inclusion rate for noise variables was 14%, while the estimated rate according to (2.4) was 20%.

This simulation illustrates that although its derivation is based on independent noise features, the
proposed mFDR estimator is reasonably robust to the presence of correlation. Furthermore, it provides
a conservative estimate of the mFDR, suggesting that the approach provides control over the mFDR, at
least on average.

5. PERMUTATION APPROACH

As correlation between noise features increases, the proposed estimator becomes more conservative. As
an extreme example, suppose that the correlation structure from Section 4 was exchangeable instead of
autoregressive: Cor(xj, xk) = 0.8 for all j, k . The results of this modification to the simulation (all other
aspects remaining the same) are shown in the right panel of Figure 4.

As one might expect, the estimates are far more conservative in this case. For example, at λ = 0.43, the
estimated mFDR is 23% even though the true mFDR is only 1%. This is a consequence of the independence
approximation, where (2.5) operates under the simplification that the selection of one noise feature does
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not affect the probability of other noise features being selected. This is reasonably accurate in many cases,
but not in this situation, where all noise features are highly correlated with each other. As a result, the lasso
tends to select only a single noise feature from this highly correlated set, while the independence-based
estimate (2.4) indicates that it has likely selected, say, seven or eight.

This phenomenon is not unique to penalized regression; substantial correlation among features causes
problems with conventional false discovery rates as well (Efron, 2007). One widely used approach for
controlling error rates while preserving correlation structures is to use a permutation approach (Westfall and
Young, 1993), and a similar strategy may be applied in order to calculate mFDRs for penalized regression as
well. The primary advantage of this approach is that it reduces the conservatism of the analytic approach
developed in Section 2, while the primary disadvantage is a greatly increased computational burden.
In this section, I describe two permutation-based methods and apply them to the simulation shown in
Figure 4.

5.1. Permuting the outcome

The simplest approach is simply to randomly permute the outcome y, creating new outcomes ỹ(b) for

b = 1, 2, . . . , B. Then, for each permutation b, solve for the lasso path β̃
(b)

(λ; X, ỹ(b)), estimate the
average number of noise features included in the model for a given value of λ

F̂D(λ) =
∑

b #{β̃(b)
j (λ) �= 0}
B

,

and the mFDR by F̂D(λ)/S(λ), where S(λ) denotes the number of variables selected by the lasso using
the original (i.e., not permuted) data.

This method is applied to the case of extreme correlation in Figure 4. The method is considerably less
conservative than the analytic approach, although still conservative for reasons that will be discussed in
Section 5.2. For example, at λ = 0.43, the average estimated mFDR is 4%, where the true value was 1%
and the analytic approach yielded 23%.

By permuting Y , this approach constructs realizations of the data in which all features belong to N ,
the set of noise features. Like (2.5), it limits the number of noise features selected but cannot be used to
control the number of false discoveries in the fully conditional sense. In the hypothesis testing literature,
this is referred to as “weak control” over the error rate.

5.2. Permuting the residuals

As seen in Figure 4, permuting the outcomes is still conservative in its estimation of mFDR. Partitioning
the variance of Y into signal and noise, ideally we would permute only the noise, but by permuting the
outcome we permute the signal as well. This has the effect of overestimating the noise present in the model.
One alternative is, rather than permuting the outcome, to permute the residuals, r(λ) = y − Xβ̂(λ),
of the original lasso fit. The method is otherwise identical to that described in Section 5.1, with the
notable exception that the residuals, unlike the outcomes, depend on λ and thus, B separate lasso solutions

β̃
(b)

(λ; X, r̃(b)) must be calculated at each value of λ (in Section 5.1, the same solutions could be used for
all values of λ), substantially increasing the computational burden.

Nevertheless, this increased computational cost does offer a benefit, as seen in Figure 4. Unlike the
analytic and permute-the-outcome approaches, permuting the residuals provides an essentially unbiased
estimate of the true false discovery rate except at very small λ. For example, at λ = 0.29, the average
estimated mFDR is 8%, as was the true mFDR, whereas the permute-the-outcome and analytic methods
estimated mFDRs of 16% and 90%, respectively.
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The purpose of this manuscript is primarily to investigate the analytic approach to calculating false
discovery rates outlined in Section 2, with relatively less emphasis on the permutation approaches. In the
opinion of the author, the analytic approach is almost always useful, since it can be calculated instantly.
Whether one wishes to take the time to carry out the permutation approach, however, depends on context:
how correlated the features are, how problematic a somewhat conservative estimate of mFDR is, and how
far along in the analytic process one is (initial exploration or final publication results). For a more detailed
comparison of the analytic and permutation approaches in the context of genetic association studies,
see Yi and others (2015).

6. CASE STUDIES

6.1. Breast cancer gene expression study

As a case study in applying the proposed method to real data, we will analyze data on gene
expression in breast cancer patients from The Cancer Genome Atlas (TCGA) project, available at
http://cancergenome.nih.gov. In this dataset, expression measurements of 17 814 genes, including BRCA1,
from 536 patients are recorded on the log scale. BRCA1 is a well studied tumor suppressor gene with
a strong relationship to breast cancer risk. Because BRCA1 is likely to interact with many other genes,
including other tumor suppressors and regulators of the cell division cycle, it is of interest to find genes
with expression levels related to that of BRCA1.

For this analysis, 491 genes with missing data were excluded, resulting in a design matrix with p =
17 322 predictors. The resulting mFDR estimates for the lasso solution path are presented in Figure 5.
Here, the mFDR estimates indicate that many genes are predictive of BRCA1 expression: we can safely
select 55 variables before the false discovery rate exceeds 10%. This makes sense scientifically, as a
large number of genes are known to affect BRCA1 expression through a variety of mechanisms, and the
sample size here is sufficient that we should be able to identify many of them. For the sake of comparison,
univariate testing of each feature separately identifies 7903 genes that have a significant correlation with
BRCA1 at a false discovery rate of 10%.

In contrast, the selective inference and sample-splitting procedures each select just a single feature.
Although the mFDR estimates are slightly conservative as discussed in Section 4, this matters far less in
practice than whether one adopts a marginal or conditional perspective with respect to false discoveries.
This example clearly illustrates how conservative the conditional perspective is in practice, especially with
high-dimensional data.

The mFDR approach is also vastly more convenient than sampling splitting or selecting inference from
the standpoint of computational burden. Calculating the mFDR is essentially instantaneous after fitting the
lasso path; the entire analysis requires just 1.3 seconds. Meanwhile, sample splitting required 9 minutes,
and applying the pathwise conditional test with the forwardStop rule using the selectiveInference
package required 1.5 hours.

Interestingly, although sample splitting and pathwise conditional testing each identified a single feature,
they did not select the same feature. Sample splitting selected the gene NBR2, which is unquestionably
associated with BRCA1 expression—the two genes are adjacent to one another on chromosome 17 and
share a promoter (Di and others, 2010). However, NBR2 is the third gene to enter the lasso model. The
forwardStop rule based on pathwise conditional testing stops after the first variable is added to the model,
and thus fails to identify NBR2.

Finally, it is worth comparing these results to the selection of λ by CV. For the TCGA data, λ = 0.0436
minimizes the CV error. The estimated mFDR at this value, however, is above 90%, indicating that although
this value of λ may be useful for prediction, we cannot be confident that the variables selected by the model
are truly related to the outcome. Indeed, it has long been recognized from a theoretical perspective that
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Fig. 5. False discovery rate estimates for a lasso model applied to the breast cancer TCGA data.

while the lasso has attractive variable selection and prediction properties, it cannot achieve both those aims
simultaneously (Fan and Li, 2001). The mFDR estimates illustrate this concretely: λ = 0.0436 produces
accurate predictions, but a larger value, λ = 0.0681, is required in order to have confidence that no more
than 10% of the variables selected are false discoveries.

6.2. Minimax concave penalty

The mFDR estimator follows directly from the KKT conditions for a given penalty, and it is straightforward
to extend to other penalties. In fact, the KKT conditions for many penalties lead to the same expression
(2.2) and therefore the same mFDR estimator (although strictly speaking, for non-convex optimization
problems these are no longer KKT conditions; they are still necessary but no longer sufficient).

One such penalty is the minimax concave penalty or MCP (Zhang, 2010). Briefly, the MCP produces
sparse estimates like the lasso, but modifies the penalty such that the selected variables are estimated
with less shrinkage towards zero (see the original article for details). The main consequence of this is
that MCP solutions tend to be more sparse, with larger regression coefficients, than those of the lasso,
thereby requiring fewer features to achieve the same predictive ability. To put it differently, for the lasso
to estimate large coefficients accurately, it must lower λ, thereby increasing the number of noise features
in the model and increasing the mFDR. MCP, on the other hand, can estimate large coefficients accurately
while still screening out the noise features, at least asymptotically (this is known as the “oracle property”).

To see how this works in practice, we can fit an MCP model to the TCGA data and compare it to
the lasso. For the value of λ minimizing CV error, the lasso had a somewhat higher predictive accuracy
(cross-validated R2 = 0.59 for the lasso and R2 = 0.54 for MCP), although the MCP model used far fewer
features (38 compared with 96 for the lasso). Consequently, for these values of λ the estimated mFDR
for MCP was much lower than that of the lasso: 44% compared with the lasso’s mFDR of above 90%.
Alternatively, if we restrict each model to a 10% mFDR, the lasso can achieve a predictive accuracy of
R2 = 0.55 compared with R2 = 0.52 for MCP, illustrating the moderate sacrifice in predictive accuracy
we can expect if we require the model to have a low FDR.

This is representative of the relationship between lasso and MCP: the lasso can typically achieve
slightly better prediction accuracy, but in doing so selects a large number of noise features. This pattern
has been observed in simulation studies (e.g., Breheny and Huang, 2011), but mFDR estimates offer a
way to observe and assess this tradeoff in the analysis of real data.

This example also illustrates the ease with which the proposed estimator can be extended to other
penalties. In addition to MCP, the SCAD (Fan and Li, 2001) and elastic net (Zou and Hastie, 2005) also
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have similar KKT conditions leading to (2.2) and thus require only trivial modifications to the mFDR
estimator.

6.3. Genetic association study of cardiac fibrosis

As an additional example, let us also look at a genetic association study of cardiac fibrosis. The data come
from the Myocardial Applied Genomics Network (MAGNet), which collected tissue and gene expression
data on 313 human hearts along with genetic data on p = 660 496 SNPs. Here, we use the ratio of
cardiomyocytes to fibroblasts in the heart tissue, measured on the log scale, as the outcome. An abundance
of fibroblasts is indicative of cardiac fibrosis, which leads to heart failure. In this analysis, the goal is
to discover single nucleotide polymorphisms (SNPs) associated with increased fibrosis. Neither sample
splitting nor covariance testing was attempted here due to the size of the dataset.

In contrast to the TCGA data, no features can be selected with any degree of confidence in the MAGNet
data. For all values of λ in which features are selected, the mFDR estimate is 100%. This is consistent with
a traditional genome-wide association analysis, which also fails to identify any SNPs that are significant
following a Bonferroni correction for multiple testing.

This negative example illustrates the usefulness of mFDR estimates in terms of guarding against false
positives. The efficiency with which methods like the lasso extend to high dimensions make analyses
like this (with n = 313 and p = 660 496) feasible from a computational standpoint. However, there
are important statistical considerations here that need to be accounted for; namely, with p so large, the
probability of selecting noise features is so great that one cannot place any trust in the variables that the
lasso selects. These considerations are clearly illustrated by the estimation of mFDR, but are lost if one
simply uses the lasso to identify the top |S| SNPs (as in, e.g., Wu and others, 2009).

7. DISCUSSION

False discovery rates are not the only consideration, or even the most important consideration, in choosing
a model. Depending on the application, the predictive accuracy of a model, as well its ability to identify
all of the important features (the false non-discovery rate; Genovese and Wasserman, 2002), are also
important. Certainly, depending on the scientific goals of the analysis, one might prefer a model with a
very high false discovery rate to a model with a low false discovery rate, if the former is more useful
for prediction. However, unless one is only interested in the model only as a black box for prediction,
we would typically also want to know how much we can trust that the features chosen by the model are
actually related to the outcome.

This is a particularly important issue for lasso-penalized regression models. The most common method
for choosing λ, CV, often selects a model with good predictive accuracy, but includes a large number of
noise variables unrelated to the outcome. This does not mean the model is not useful, but it does mean
that one should be very cautious about interpreting features selected in this way as being “significant”
in the analysis. Quantifying the false discovery rate allows one to assess this phenomenon, and either
identify a smaller set of features that can be confidently selected—even if a larger set of features are used
for prediction—or perhaps to choose a model that strikes a balance between prediction error and false
discovery rate.

The false discovery rate estimator presented in this article is a straightforward, useful way of quantifying
the reliability of feature selection for penalized regression models such as the lasso. Compared with other
proposals such as sample splitting and the pathwise covariance and selective inference tests, mFDR
uses a more relaxed definition of a false discovery, in which only variables marginally independent of the
outcome are considered to be false discoveries. The relaxed definition pursued here has several advantages
in practice, particularly in high dimensions. These advantages include greater power to detect features,
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no added computation cost, and a simple rate with a straightforward interpretation. Although the estimate
can be conservative for highly correlated features, in most realistic settings this conservatism is mild.

The proposed estimator is easy to implement and is available (along with the permutation methods of
Section 5) in the R package ncvreg (Breheny and Huang, 2011), which was used to fit all of the models
presented in this article (except where the hdi and selectiveInference packages were used). The
following bit of code demonstrates its use:

fit <- ncvreg(X, y, penalty="lasso")
obj <- mfdr(fit)
plot(obj)

This will fit a lasso model, estimate the mFDR at each value of λ and assign it to an object, then plot the
results, as in Figure 5.

The simplicity of the method makes it available at no added computational cost and very easy to
generalize to new methods: the mfdr function in ncvreg also works for elastic net, SCAD, MCP, and
Mnet (Huang and others, 2016) penalties. As with any statistic, there are limitations and one needs to be
careful with interpretation, but mFDR is a convenient summary measure that offers a useful estimate for
the reliability of feature selection in penalized regression models.
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APPENDIX

All of the code and data to reproduce the analyses in this manuscript, with the exception of the human
genetic data considered in Section 6.3, are available at https://github.com/pbreheny/lassoFDRpaper.

Proof of Theorem 3.1. Starting with the observation that rj = Xβ + ε − X−jβ̂−j, for any j ∈ N we
have

1√
n

x′
jrj = 1√

n
x′

jε + ( 1
n x′

jX−j){
√

n(β−j − β̂−j)}

The first term, 1√
n x′

jε, follows a N (0, σ 2) distribution by the independence of xj and ε. The second term,
1
n x′

jX−j, converges to zero by the assumption that �N = I (xj is also independent of variables in A since
j ∈ N ). Finally, the third term is bounded in probability provided that

√
nλn is bounded (Fan and Li,

2001). Therefore, by Slutsky’s Theorem, the entire quantity converges in distribution to N (0, σ 2). �
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