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Summary. In many applications, covariates possess a grouping structure that can be incorporated into the analysis to select
important groups as well as important members of those groups. One important example arises in genetic association studies,
where genes may have several variants capable of contributing to disease. An ideal penalized regression approach would select
variables by balancing both the direct evidence of a feature’s importance as well as the indirect evidence offered by the
grouping structure. This work proposes a new approach we call the group exponential lasso (GEL) which features a decay
parameter controlling the degree to which feature selection is coupled together within groups. We demonstrate that the GEL
has a number of statistical and computational advantages over previously proposed group penalties such as the group lasso,
group bridge, and composite MCP. Finally, we apply these methods to the problem of detecting rare variants in a genetic
association study.
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1. Introduction

In regression problems, variables can often be thought of as
grouped. This arises when an underlying factor contributes
multiple individual predictors that are distinct, yet related.
Common examples include a set of indicator variables for rep-
resenting a single categorical variable, or a set of basis func-
tions evaluated for a single continuous variable. Grouping can
also be identified by scientific reasoning. Genetic variants may
be thought of as grouped by the gene that they belong to; like-
wise, the expression of genes may be thought of as grouped
by the pathways those genes belong to.

Penalized regression provides an attractive approach to
variable selection, particularly in high-dimensional problems.
Although the majority of the research in this area has dealt
with individual (i.e., not grouped) variable selection, there
has been a fair amount of recent work extending these ap-
proaches to grouped predictors. The most prominent method
in this field is the group lasso (Yuan and Lin, 2006), which
yields sparse solutions at the group level. The concept of
bi-level selection—selecting not only the important groups,
but important members within those groups—was introduced
in Huang et al. (2009). An overview of penalized regression
methods for both group selection and bi-level selection was
provided in a recent review by Huang, Breheny, and Ma
(2012).

The group bridge methodology proposed in Huang et al.
(2009) suffers from a number of computational drawbacks
that limit its applicability in practice, particularly for large
data sets. Here, we propose a new method we call the
group exponential lasso (GEL), in which the threshold for
variable selection declines exponentially as evidence of its
group’s importance increases. We derive algorithms to effi-
ciently fit these models, and make this methodology available
via the R package grpreg (available at cran.r-project.org/
package=grpreg). The GEL has a number of appealing prop-

erties in terms of estimation accuracy as well as individual-
and group-level variable selection, and can be scaled up to deal
with very large problems, which make it particularly well-
suited for the problem of detecting rare variants in genetic
association studies.

We define the GEL, illustrate some of its mathematical
properties, and develop algorithms for fitting the proposed
model in Section 2. We demonstrate that the GEL performs
well in simulation, outperforming other group penalization
methods in a number of scenarios, in Section 3. Finally, we
apply the GEL to data from the 1000 Genomes Project and
illustrate its advantages over competing methods in the anal-
ysis of genetic association studies involving rare variants.

2. Group Exponential Lasso

We consider models in which the relationship between the
outcome and the explanatory variables is specified in terms
of a linear predictor η:

η = β0 +
J∑

j=1

Xjβj, (1)

where Xj is the portion of the design matrix formed by the
predictors in the jth group and the vector βj consists of the as-
sociated regression coefficients. Letting Kj denote the number
of members in group j, Xj is an n × Kj matrix with elements
(xijk), the value of kth covariate in the jth group for the ith
subject. Covariates that do not belong to any group may be
thought of as a group containing a single member. The total
number of explanatory variables is p = ∑

j
Kj.

The problem of interest involves estimating a vector of co-
efficients β defined by minimizing an objective function Q(β)
composed of a loss function L that quantifies the discrepancy
between yi and ηi combined with a penalty P that encourages
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Figure 1. Lasso, MCP, and exponential penalty functions (left) and penalization rates (right). Note that none of the
penalties are differentiable at βj = 0, but that all three have finite directional derivatives everywhere.

sparsity and prevents overfitting:

Q(β) = L(β|y,X) + P(β|λ), (2)

where the regularization parameter λ controls the tradeoff
between loss and penalty.

To ensure that the penalty is invariant to scale, covari-
ates are standardized prior to fitting such that

∑
i
xijk = 0 and

n−1
∑

i
x2

ijk = 1. We assume without loss of generality that the
covariates are standardized in this way during the model fit-
ting process and then transformed back to the original scale
once all models have been fit. This section focuses primar-
ily on linear regression where L(β|y,X) = ‖y − Xβ‖2 /2n and
where we also assume, again without loss of generality, that
the response has been centered such that

∑
i
yi = 0. In this

case β̂0 = 0 and may be ignored. Generalized linear models
are considered in Section 2.4.

In the bi-level selection case, the penalty should incorporate
the information contained in the grouping structure, which
reflects a prior belief that important features are likely to be
clustered to some extent in these groups. This involves com-
bining penalties at the group and individual variable levels.
A simple way of combining these penalties is by adding them,
as in the following:

P(β|λ) = αλ
∑

j

∑
k

∣∣βjk

∣∣ + (1 − α)λ

J∑
j=1

∥∥βj

∥∥ . (3)

This approach, in which the penalty consists of the lasso
penalty plus the group lasso penalty, is known as the sparse
group lasso, originally proposed in Wu and Lange (2008) and
further developed in Simon et al. (2013). Here, the α param-
eter controls the tradeoff between the two penalties, with the
lasso and group lasso representing special cases (α = 1 and
α = 0, respectively).

Alternatively, one may combine group and individual vari-
able penalties in a hierarchical framework (Breheny and

Huang, 2009):

P(β|λ) =
J∑

j=1

fo

{
Kj∑
k=1

fi(βjk)

}
, (4)

where fo and fi are penalties—the outer and inner penal-
ties, respectively—both of which, in general, may involve λ

as well as other tuning parameters. Although this framework
is very general, it may be too general, in the sense that not
all combinations of outer and inner penalties necessarily pro-
duce sensible models. A less general framework was proposed
in Huang et al. (2012):

P(β|λ) =
J∑

j=1

f
(∥∥βj

∥∥
1
|λ)

. (5)

If f (·) is a concave function on [0, ∞), the model will produce
solutions with grouping properties; the authors refer to this
class of penalties as concave 1-norm group penalties.

Here, we propose a method for bi-level variable selection
called the group exponential lasso, in which f is a concave
exponential function. We define the exponential function and
relate it to other commonly used penalty functions in Sec-
tion 2.1, then define the GEL and discuss its properties in
Section 2.2.

2.1. The Exponential Penalty

Consider the following function, defined on [0, ∞), which we
call the exponential penalty:

f (θ|λ, τ) = λ2

τ

{
1 − exp

(
− τθ

λ

)}
. (6)

The logic behind the penalty can be seen in Figure 1, which
contrasts the penalization rate of the exponential penalty
with that of the lasso and the minimax concave penalty, or
MCP (Zhang, 2010). MCP and the exponential penalty begin
by applying the same rate of penalization as the lasso, but



The Group Exponential Lasso for Bi-Level Variable Selection 733

continuously relax that penalization. MCP relaxes the rate
of penalization linearly, and thus results in f ′(θ) = 0 for all
|θ| > γλ, where γ is an additional tuning parameter of MCP
playing a role similar to τ in (6). The exponential penalty,
on the other hand, allows the penalty to decay exponentially,
approaching f ′(θ) = 0 asymptotically but never reaching it.
The diminishing rate of penalization is an attractive property;
as discussed in Fan and Li (2001), it leads to the estimator β̂

being nearly unbiased given a large enough sample size. The
lasso does not have this property, and introduces significant
bias toward zero for large regression coefficients.

Like the MC penalty and unlike the lasso, the exponential
penalty is not convex. However, like the MC penalty, there are
reasonable conditions under which the objective function is
convex. These conditions are presented in the following propo-
sition, which applies to the least squares loss function and the
(ungrouped) exponential penalty, with objective function

Q(β) = 1

2n
‖y − Xβ‖2 +

p∑
j=1

f (βj|λ, τ), (7)

where f (βj|λ, τ) is given in (6).

Proposition 1. Let ξ∗ denote the minimum eigenvalue of
n−1X′X. Then objective function (7) is strictly convex if τ <

ξ∗.

The above proposition has the following corollary:

Corollary 1. Let Q(βj) denote (7) considered as a func-
tion only of βj, with all other coefficients fixed. Then Q(βj)
is strictly convex if τ < 1.

In other words, provided that the rate of exponential de-
cay, τ, is not too sharp, we will have a stable objective func-
tion with a unique global minimum. Furthermore, since the
penalty function is separable and the objective function is
convex in each coordinate dimension, we may apply a coor-
dinate descent approach to solve for β and this approach is
guaranteed to converge to the minimum. Of course, in high
dimensions (p ≥ n), the minimum eigenvalue ξ∗ will be zero,
so strict global convexity is not possible. However, local con-
vexity (convexity over a subset of the coefficients) may still
apply; in this case, ξ∗ in Proposition 1 denotes the minimum
eigenvalue of n−1X′

AXA, where A denotes the subset of active
covariates. See Breheny and Huang (2011) for further discus-
sion of local convexity.

The focus of this paper is on using the exponential penalty
for grouped regularization, and thus a detailed study of the
properties of the estimator for the ungrouped case is outside
our scope. However, given the similarity of the penalty to the
MC penalty, the estimators are likely to have similar estima-
tion properties. The exponential penalty is also similar to the
bridge penalty, in which the penalty applied to the jth covari-
ate is

∣∣βj

∣∣q
. Like the exponential penalty, the penalization rate

of the bridge penalty with q < 1 diminishes gradually toward
zero as β increases. The most important difference between
the exponential penalty and the bridge penalty is that, as
β → 0, the penalization rate of the exponential penalty is sta-

ble and approaches to the rate applied by the lasso. For the
bridge penalty, on the other hand, limβ→0+ f ′(β) = ∞. This
singularity at zero leads to considerable practical difficulties
in working with bridge (and group bridge) penalties, as these
penalties are not directionally differentiable at 0. The expo-
nential penalty shares many of the same aspects as the bridge
penalty, but offers considerable advantages from an algorith-
mic perspective, as it allows for convex objective functions
and remains directionally differentiable everywhere.

2.2. The Group Exponential Lasso

Our main motivation for proposing the exponential penalty is
for use as an outer penalty in the group regularization frame-
work given by (4), or more specifically, as the concave penalty
f in (5). Note that the partial derivative of the penalty func-
tion in (4) with respect to the jkth covariate, which we denote

jk, is


jk = f ′
o

{
Kj∑
�=1

fi(βj�)

}
f ′

i (βjk). (8)

In other words, the penalization rate applied to a coefficient
depends on two factors. The first is the magnitude of the coef-
ficient itself; this is the part given by f ′

i (βjk) and was plotted
in Figure 1. The other part of the equation is governed by the
magnitude of the other coefficients in its group. The main idea
is this: suppose we are given two features which display equal
association with the outcome. One of the features is located
in a group in which several other features are important, the
other resides in a group for which none of the other features
are important. Given this information, it makes sense to se-
lect the first feature and decide that the second association
is spurious. For example, if the features are variant alleles in
a genetic association study, signal from a variant in a gene
seemingly unrelated to the outcome is much more likely to
be spurious than a variant in a gene housing other variants
known to be associated with the disease.

The motivation behind the exponential penalty is to have
the penalization applied to a coefficient βjk decay exponen-
tially as group j grows in importance, with the parameter τ

controlling the rate of that decay, and thus, the strength of
grouping. To see this, let P(β) take the form (5), with f the
exponential penalty given by (6); we refer to the resulting
penalty as the group exponential lasso. In this case,


j = λ exp
{

− τ

λ

∥∥βj

∥∥
1

}
; (9)

note that we have dropped the subscript k from the expres-
sion, since the partial derivative is 
j for all members of the
jth group. Again, with the ordinary lasso penalty this partial
derivative is λ for all coefficients; with the GEL this penal-
ization rate may be modified by the relevance of the group to
the outcome. If no members of group j have been selected,∥∥βj

∥∥
1

= 0 and all members of the group are penalized at
the full rate λ. However, if some members are nonzero, then∥∥βj

∥∥
1

> 0 and the penalization rate will be diminished. In a
sense, the effect is similar to the adaptive lasso (Zou, 2006),
although here the modifications to λ arise naturally from the



734 Biometrics, September 2015

β1

S
el

ec
tio

n 
th

re
sh

ol
d 

fo
r 
β 2

0 γλ

0

λ �

K=2

K=10

τ = 1 4

τ = 1 20

τ = 1

Lasso
Group lasso
Composite MCP
Exponential

Figure 2. Effect of changing β1 on the selection threshold
for β2 for two components in the same group.

hierarchical structure of the penalty rather than being im-
posed externally.

We refer to the phenomenon whereby the penalty applied
to a coefficient is diminished if it is grouped with other im-
portant predictors as coupling. With the exponential penalty,
the strength of coupling is determined by τ. Thus, in what
follows we refer to τ as the coupling parameter.

To make the notion of coupling more concrete, suppose we
have a group with two coefficients, β1 and β2 (we momen-
tarily drop the group-level subscript here for the sake of sim-
plicity). Now consider the effect that changing β1 has on the
selection threshold for β2. Letting z denote the unpenalized
solution for β2 (i.e., the value that minimizes the loss func-
tion with the other β’s fixed at a given value), we define the

“selection threshold” as inf{z : β̂2 �= 0}. In other words, the
selection threshold is the minimum association that x2 must
have with the outcome in order for it to be selected.

The choice of inner and outer penalty in (4) determines
the extent of coupling; this is plotted in Figure 2. For exam-
ple, suppose fi and fo are both lasso penalties. In this case,
the penalty reduces to that of the conventional lasso, and no
coupling takes place: the selection threshold for β2 remains λ

regardless of the value of β1. At the other extreme, consider
the group lasso of Yuan and Lin (2006). Here, the selection
threshold for β2 is λ when β1 = 0, but if β1 is nonzero, the
selection threshold for β2 instantly drops to 0. From a selec-
tion standpoint, this represents absolute coupling: it is not
possible to select β1 without β2. For the sake of clarity, the
sparse group lasso (SGL) is not represented on the plot, but
its coupling profile is similar to the group lasso, albeit with the
selection threshold dropping from λ to αλ instead of to zero
when β1 �= 0. Thus, solutions are partially coupled in SGL as
in the composite MCP and exponential approaches, although
in a discontinuous, step-function fashion.

The composite MCP was proposed in Breheny and Huang
(2009) as a compromise between these two extremes—to allow
the selection of βjk to be influenced by the other coefficients
in group j, but in such a manner that βjk must still show an
independent association with the outcome to be included in
the model. As the figure illustrates, this behaves reasonably
for small group sizes. For example, in a two-component group
(K = 2), the selection threshold for β2 drops to λ/2 when β1

is large (≥ γλ). However, for the composite MCP, the extent

of coupling is limited by the group size K: when β1 is large,
the selection threshold for β2 drops to λ(K − 1)/K; Figure 2
illustrates this for K = 10. In this case, when feature 2 is in a
group with another feature strongly associated with the out-
come, but the other eight are not associated with the outcome,
its selection threshold is only 10% lower than that of a feature
in a group lacking any associations with the outcome.

It is possible, of course, that this degree of coupling is ap-
propriate for the problem at hand. However, for many applica-
tions it represents a rather insubstantial amount of coupling.
For the genetic association application of Section 4, for exam-
ple, we would expect the solution to be highly sparse across
groups, as only a very small number of genes are likely to
be related to the outcome. Furthermore, many of the groups
are large, consisting of dozens or even hundreds of variants.
For these groups, the composite MCP provides essentially no
coupling—when a variant or two is chosen from these groups,
the effect on selection for the other variants in the group is
minimal. This is inconsistent with the nature of the problem.
Variants tend to be functionally related, so that if one vari-
ant of a gene impacts an outcome, it is quite likely that others
variants of the same gene also have an impact.

A limitation of the composite MCP is the fact that there
is no parameter through which the analyst can control the
strength of coupling to match the problem at hand. The GEL,
on the other hand, does provide a coupling parameter in τ.
Figure 2 illustrates the effect that varying this parameter has
on the coupling between two elements in a group. As τ in-
creases, so does the degree of coupling. With τ = 1/20, the
selection threshold for β2 is only minimally affected by β1;
with τ = 1, the selection threshold drops sharply as β1 enters
the model.

The notion of τ as a coupling parameter can also be justified
in the sense that, as τ → 0, the GEL becomes equivalent to
the standard lasso. This phenomenon is formally stated in
Proposition 2.

Proposition 2. Letting f denote the exponential penalty
defined in (6),

lim
τ→0

J∑
j=1

f
(∥∥βj

∥∥
1

) = λ

J∑
j=1

Kj∑
k=1

∣∣βjk

∣∣
In principle, we could apply the idea of the group expo-

nential penalty to (4) with any fi as an inner penalty. For
the sake of simplicity, we focus here on using the lasso as the
inner penalty fi, and refer to this approach as the GEL. We
note, however, that the algorithms described in Section 2.3
apply other fi such as MCP and SCAD; indeed, the exten-
sions are rather straightforward and we briefly explored the
properties of a “group exponential MCP,” with MCP as the
inner penalty. We found the empirical performance of this es-
timator to be relatively similar to that of GEL, although the
estimator may be worth exploring further; we return to this
point in Section 5.

2.3. Model Fitting

We apply the local coordinate descent approach proposed in
Breheny and Huang (2009) to solve for the minimum of the
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GEL objective function. Like other coordinate descent algo-
rithms, we optimize the objective function with respect to a
single parameter βjk at a time. Coordinate descent algorithms
are typically advantageous in settings where one-dimensional
updates have simple, closed-form solutions. The GEL objec-
tive function lacks a closed-form one-dimensional solution;
nevertheless, it may be locally approximated by a majorizing
function that does have a closed form solution. he theory un-
derlying majorization–minimization algorithms then ensures
that the proposed algorithm possesses the descent property
and is guaranteed to converge.

A detailed description of the algorithm is provided in the
supplementary materials, but the main idea is to take a first-
order Taylor series expansion of the penalty function about
the current value of β. This results in a linear approximation
proportional to the lasso penalty, allowing efficient updating
of model coordinates according to

βjk ← S(zjk|
̃j),

where S is the soft-thresholding operator (Donoho and John-
stone, 1994), zjk is the unpenalized solution (i.e., the value
of βjk that minimizes L(β|y,X) with all other β values held
constant), and 
̃j is given by (9) and evaluated at the current
value of βj.

The local coordinate descent algorithm has two very attrac-
tive properties. First, because no cumbersome matrix opera-
tions are involved, iterations can be computed quite rapidly.
Specifically, updating each parameter requires only O(2n) op-
erations, and thus each full iteration, cycling over the entire
vector of parameters, can be accomplished in O(2np) opera-
tions. Because the algorithm in linear in p, it can be scaled up
to handle very high-dimensional problems. The other advan-
tage of the local coordinate descent algorithm is its stability:
Proposition 3 establishes that it is guaranteed to decrease the
objective function with each iteration.

Proposition 3. Let {β(k)} denote the sequence of coeffi-
cients produced at each iteration of the local coordinate de-
scent algorithm for fitting group exponential lasso models. For
all k = 0, 1, 2, . . . ,

Q(β(k+1)) ≤ Q(β(k)).

Furthermore, the sequence {β1, β2, . . .} is guaranteed to con-
verge to a stationary point of Q(β).

Proposition 3 works because the GEL penalty is concave
on [0, ∞), and therefore a linear (lasso) penalty provides a
majorizing approximation that is both easy to solve and drives
the objective function “downhill.” It is worth noting, however,
that since the objective function is not itself convex, the above
proposition does not rule out convergence to local minima.

As has been described elsewhere (Friedman, Hastie, and
Tibshirani, 2010; Breheny and Huang, 2011), we are usually

interested in obtaining β̂ for a path of λ values and then
choosing among those models using either cross-validation or
some form of information criterion. The continuity of these
solution paths allows the algorithm to efficiently choose ini-

tial values that are never too far from the solution, a phe-
nomenon known as “warm starts.” In this regard, the GEL
penalty has considerable computational advantages over the
group bridge penalty (Huang et al., 2009), while retaining sim-
ilar estimation properties. Both penalties are concave 1-norm
group penalties of form (5), and as noted in Section 2.1, the
exponential penalty is similar in shape and functional form to
the bridge penalty. However, the group bridge penalty suffers
from singularities at βj = 0, which cause a number of compu-
tational problems (detailed in Breheny and Huang, 2009) and
prevent taking advantage of warm starts. The GEL penalty,
on the other hand, presents none of these difficulties, and as
we will see in Section 4, can be stably and efficiently scaled up
to handle very large problems. In particular, the data sets in
Section 4 contain roughly 25,000 variables and GEL models
may be fit to the data in 2–4 seconds on a standard desktop
computer. In comparison, the SGL requires several minutes
to fit a model to the same data, and group bridge models are
not computationally feasible to fit to data of this scale.

2.4. Generalized Linear Models

The penalties and algorithms we have described are read-
ily extended to models with loss functions other than least
squares. In particular, for generalized linear models (GLMs;
McCullagh and Nelder, 1989) the loss function is the nega-
tive log likelihood from an exponential family. The typical ap-
proach to fitting such models is the iteratively reweighted least
squares (IRLS) algorithm, which involves making a quadratic
approximation to the loss function, solving the quadratic ap-
proximation, and repeating until convergence. It is straight-
forward to incorporate the local coordinate descent algorithm
described above into the IRLS algorithm, though some subtle
issues arise concerning the relationship between the coupling
parameter τ and convexity.

In the IRLS algorithm, a working response (or adjusted re-
sponse) ỹ and diagonal matrix of weights W are calculated
based on a Taylor series expansion about the current esti-
mates, β̃, so that

L(β|y,X) ≈ 1

2n
(ỹ − Xβ)′W(ỹ − Xβ)

in the neighborhood of β̃. The linear approximation of the
penalty in the local coordinate descent algorithm is un-
changed; thus, letting zjk represent the value of βjk that min-
imizes this quadratic approximation, the updating step for a
GLM becomes

βjk ← S(zjk|
̃j)

vjk

,

where vjk = n−1x′
jkWxjk. It is worth noting that, analogous

to Proposition 3, this approach is guaranteed to drive the
quadratic approximation downhill, but like the IRLS algo-
rithm itself, is not guaranteed to converge monotonically with
respect to the actual objective function.

A subtle issue that presents itself for the GEL (indeed,
for any nonconvex penalty) is the fact that the curvature of
the loss function is distorted by W. Thus, the conclusion in
Corollary 1 no longer holds, as the minimum eigenvalue in
Proposition 1 now depends on W, which is not constant.
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Figure 3. Effect of group size on performance. The “Setting” is given as {Number of nonzero coefficients} / {Number
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This is not a fatal problem—there still exist values of τ

that produce convex objective functions—but does represent
something of an inconvenience to a user of these methods.
In linear regression, the coupling parameter τ has a rather
attractive, interpretable scale: τ = 0 represents no coupling,
equivalent to the traditional lasso, while τ = 1 represents the
maximum allowable degree of coupling before the objective
function splinters into an unmanageable mess of local minima.

We would like to retain this convenient τ ∈ (0, 1) scale so
that the analyst does not have to recalibrate the meaning of
τ depending on the type of model that he or she is fitting.
This can be accomplished in a straightforward manner by
applying the idea of adaptive rescaling introduced in Breheny
and Huang (2011); see supplementary materials for details.
The primary purpose of this is to allow τ to remain unaffected
by the weights and thereby take on a consistent interpretation
in terms of coupling and convexity across different classes of
models.

3. Simulation Studies

In this section, we evaluate the performance of the GEL us-
ing simulated data. We compare GEL against various other
penalized regression methods, including the lasso (Tibshirani,
1996), MCP (Zhang, 2010), group lasso (Yuan and Lin, 2006),
and composite MCP (Breheny and Huang, 2009). Lasso and
MCP are completely uncoupled methods, while group lasso
is completely coupled. Composite MCP is a bi-level selection
method, like GEL, designed to strike a compromise between
those two extremes.

A sample size of n = 100 was used throughout, while the
number of features and groups is varied. In all of the studies,
an external validation set, also of size n = 100, was used to
choose the regularization parameter λ for each method. For
MCP and composite MCP, γ was set to 3. Throughout, we
fix the signal-to-noise ratio of the generating model at 1 (i.e.,
the R2 of the true model is 0.5). Covariate values and error
terms were generated independently from the standard nor-
mal distribution. Equivalent simulations were carried out for

logistic regression; the results were similar and are included
in the supplemental materials.

3.1. Varying Group Size

In this section, we aim to compare the various group penal-
ization methods. Here, all of the nonzero coefficients reside
within a single group. Thus, the grouping information is use-
ful and group penalization methods should outperform the
lasso. Here we fix J , the number of groups, at 10 and vary the
number of elements within each group among {2, 5, 10, 20}
(i.e., the total number of predictors varies from 20 to 200).

The number of nonzero coefficients in the non-null group
varies correspondingly among {2, 2, 3, 4}. As discussed in Sec-
tion 2.2, the coupling strength of the composite MCP dimin-
ishes as group size increases; we anticipate that GEL will out-
perform composite MCP at larger group sizes. For the GEL,
we set τ equal to 1/3 (the effect of varying τ will be explored
in Section 3.2).

The results of this simulation are presented in Figure 3,
which evaluates performance in terms of estimation efficiency
and selection accuracy at both the individual predictor and
group levels. Let us first considering estimation efficiency. As
one would expect, the group penalization methods generally
outperform the lasso. The exception to this statement is that
the group lasso does not outperform the lasso in the pres-
ence of incomplete grouping (i.e., where groups have both
zero and nonzero coefficients). When grouping is incomplete,
the bi-level selection methods produce more accurate esti-
mates than both lasso and group lasso. The hierarchical ap-
proaches, in turn, are substantially more accurate than the
SGL. Composite MCP and GEL are similar for small groups
(five or fewer predictors per group), but GEL becomes sub-
stantially more efficient when group sizes are large. In partic-
ular, GEL achieves an estimation efficiency 32% better than
that of composite MCP in the “20 predictors per group”
setting.

Similar remarks hold for variable selection accuracy. The
group lasso performs quite poorly in the incompletely grouped
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Figure 4. Effect of degree of grouping on performance. In each setting, there are eight non-null predictors, distributed
among a variable number of groups ranging from 8 to 1. All settings contain J = 100 groups of size 10 and a sample size of
n = 100; results are averaged over 600 independently generated data sets. For the leftmost plot, estimation efficiency is given as
mean squared error (MSE) relative to MCP. For the center and right plots, “misclassification” means that a predictor/group
was selected despite having a true coefficient of zero, or vice versa.

settings, as it is unable to select variables within groups. Al-
though the SGL is able to select variables within groups, its
selection accuracy is not much better than group lasso. Once
again, composite MCP and GEL are similar for small groups,
but with 20 predictors per group, composite MCP misclassi-
fied 11 predictors, on average, compared with 7 for GEL.

The superior performance of GEL is seen most dramatically
with respect to group selection, where it outperformed the
other four methods by a considerable margin. Notably, in the
20 predictors per group setting, GEL achieved near-perfect
group selection accuracy, committing zero misclassifications
in 92% of the simulations. In contrast, no other method was
able to achieve perfect classification at the group level in more
than 20% of the simulations.

In summary, for all three measures (estimation accu-
racy, group selection, and individual variable selection), GEL
clearly outperforms the four other methods, although its per-
formance was similar to composite MCP for small groups.

3.2. Varying the Degree of Grouping

The generating model for each simulation in this section con-
tains eight nonzero coefficients, distributed into a varying
number of groups, {8, 4, 2, 1}. At the one extreme, all eight
coefficients are in different groups and the knowledge of which
group the predictors belong to is not useful. At the other ex-
treme, all eight coefficients belong to the same group, and
the grouping information is highly useful. Here, we fix J , the
number of groups, at 100, each containing 10 elements (i.e.,
the total number of predictors is 1000). Different versions of
the GEL, with τ varying among {0.1, 0.2, 0.3, 0.5}, were fit to
each simulated data set in order to examine the empirical role
of the τ parameter.

The results of the simulation are presented in Figure 4.
Along the horizontal axis, we plot the number of non-null
groups, although the axis may be informally thought of as the
“degree of grouping,” with the far left being “no grouping”
and the far right denoting a rather heavy degree of grouping.
Varying this axis has no impact whatsoever on the MCP esti-
mates, which do not utilize grouping information in any way.

The degree of grouping, however, has a noticeable impact on
the GEL estimates.

It is worth noting that even in the case where the solutions
are not grouped in any way, the estimation accuracy of GEL
is fairly similar to that of MCP. In particular, for τ = 0.3,
the GEL is only 5% less efficient than MCP. Thus, GEL is
robust to the assumption of grouping—the price one pays for
an incorrect assumption of grouping, or for classification error
in grouping, is rather small (although it can be larger when
the signal-to-noise ratio is high, see supplementary materials).

When grouping information is valuable, however, the GEL
leverages this information to considerable effect. Indeed, at
the highest level of grouping considered here, the estimation
accuracy of GEL is five times better than that of MCP. This
finding is fairly similar across the values of τ considered here,
although of course as τ → 0, the GEL approaches the lasso
(Proposition 2), and the advantage is lost.

A similar result holds, at least for τ = 0.3 and τ = 0.5, with
respect to variable selection. These methods are comparable
to MCP at low levels of grouping, but clearly outperform
MCP at the highest degree of grouping: GEL (τ = 0.3) com-
mitted only 4 misclassification errors on average, compared
with 12 for MCP. GEL with τ = 0.2 and τ = 0.1, on the other
hand, are considerably worse at the selection of individual
variables than MCP is. The reason for this is that these esti-
mators are becoming lasso-like at small values of τ, and the
lasso is considerably worse at variable selection than is MCP.
The lasso averaged over 30 misclassifications per simulation;
it is not shown on the graph for the sake of clarity, but if
it were, would be represented in the middle panel by a hor-
izontal line near 30. This is also why increasing τ decreases
misclassifications even in the absence of grouping.

Similar trends hold for group selection, although GEL even
more dramatically outperforms MCP in this setting. At the
highest degree of grouping, GEL (τ = 0.3) commits only two
misclassifications at the group level (out of 100 groups), while
MCP averaged 8 misclassifications. Again, for lower values of
τ, GEL begins to exhibit similar selection properties to that
of the lasso, which here commits an average of 24 misclassi-
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fications (once again, not shown on the graph for the sake of
clarity).

These simulation results demonstrate a robustness to the
selection of τ not apparent from the derivation of the GEL
in Section 2.2. On the one hand, this may be thought of as a
drawback, in that the method does not allow the analyst to
modify the strength of coupling but leave convexity unaltered.
In practice, however, this makes the method much simpler to
apply, in that the analyst does not need to worry a great deal
about extra tuning parameters. Indeed, the GEL with τ = 0.3
achieves a nice balance across various degrees of grouping,
exhibiting similar performance to that of MCP (arguably the
state of the art in terms of non-grouped variable selection
methods) in the ungrouped case, while making effective use
of grouping information when it is useful.

We find τ ≈ 1/3 to be broadly successful as a default value,
with relatively diminishing returns at larger τ values. Cer-
tainly, Figure 4 shows that τ = 0.5 is capable of offering ad-
vantages over τ = 0.3, particularly in terms of group selection
accuracy. However, as shown in Proposition 1, increasing τ

decreases the convexity of the objective function and risks
the possibility of the solution to (2) exhibiting multiple local
minima. In practice, we found τ = 1/2 to occasionally run into
difficulty with convergence, while these problems were rare for
the GEL with τ = 1/3.

4. Application to Association Studies Involving
Rare Variants

An important potential application of bi-level selection in gen-
eral, and the GEL in particular, is the problem of identifying
rare variants associated with disease in genetic association
studies. Briefly, the idea is that many genetic variants of a
given gene may exist. Each individual variant may be rare,
but collectively, the group of variants could play a significant
role in phenotypic variation in the population. A typical anal-
ysis that tests each variant separately, however, would have
low power to detect associations involving any of these vari-
ants (see Li and Leal, 2008; Bansal et al., 2010, for more
extensive discussion of these issues).

Currently, most methods for addressing this problem in-
volve one of the following two approaches: “collapsing” the
rare variants into a single measurement, or carrying out an
omnibus multivariable/multivariate test of the joint null hy-
pothesis that none of the variants in a gene have an effect.
Each approach has its limitations, however, and neither ap-
proach provides any insight into the selection of individual
variants. In particular, neither approach can address the ques-
tion of choosing between individual variants in different genes.

An alternative approach is to use group penalization. Here,
each variant is a predictor and the variants are grouped ac-
cording to the gene they belong to. Such a model naturally
pools information across variants in a group, while avoid-
ing the simplistic assumption (made by the “collapsing” ap-
proach) that each variant has exactly the same effect on the
phenotypic outcome. Furthermore, the GEL performs bi-level
selection, providing insight into which individual variants—as
well as which genes—are responsible for phenotypic variation.

To test this approach on real(istic) data, we analyzed the
data set from the 2010 Genetic Analysis Workshop (GAW).

The data set contains real exon sequencing data from the 1000
Genomes Project (The 1000 Genomes Project Consortium,
2010) on 697 unrelated individuals and 24,487 genetic vari-
ants, grouped into 3205 genes (in the notation of this paper,
n = 697, p = 24, 487, and J = 3, 205). Two hundred indepen-
dent sets of quantitative phenotypes were simulated by the
organizers of the workshop according to a plausible genetic
model of variant-disease association; the data and simulation
design are described in greater detail in Almasy et al. (2011).

We compared the GEL with the following methods, some of
which perform only variant-level selection and others perform-
ing gene-level selection: the lasso, which performs variant-level
selection; the “Univariate” approach, which performs variant-
level testing based on basic univariate tests of correlation; the
group lasso, which performs gene-level selection; the “Col-
lapse” approach, which performs gene-level testing based on
adding together the variants in that gene; and the “Multi-
variate” approach, which performs gene-level testing based
on an omnibus F -test in the linear regression model with all
variants for that gene included as predictors. The composite
MCP and SGL, like the GEL, perform bi-level selection and
are included in both gene-level and variant-level comparisons.

To make the comparison equivalent between variable-
selection approaches and hypothesis-testing approaches, each
method was allowed to select the same number of vari-
ants/genes. Since there were 39 causal variants in the generat-
ing model, the variant-level approaches were allowed to select
39 variants (the first 39 coefficients to enter the model for the
variable-selection approaches, the most significant 39 variants
for the hypothesis testing approach). Likewise, as there were
9 causal genes, each gene-level approach was allowed to se-
lect 9 genes. The bi-level selection approaches were included
in both comparisons, although the final models appearing in
each comparison are slightly different depending on whether
the gene-level stopping rule or the variant-level stopping rule
was used. Methods were compared according to the accuracy
of these selections. In practice, of course one would not know
the true number of causal variants/genes. However, it is often
the case that researchers only have the resources to follow-up
on a limited number of findings. For this reason, it is not un-
common in practice to select the top, say, 10 or 25 features
for further follow-up. In summary, although the exact number
(9, 39) of selections is artificial, the design of the study is a
fair comparison of realistic criteria. Information on the per-
formance of cross-validation for penalized regression methods
is available in the supplementary materials.

The results of the analyses, averaged over the 200 simu-
lation replications, are in presented for the variant-selection
methods and gene-selection methods in Tables 1 and 2, respec-
tively. As shown in Table 1, the univariate and lasso methods
do not incorporate grouping information into the selection
process; consequently, the 39 variants they select are scat-
tered across 30+ genes. Clearly, since the causal variants are
concentrated in 9 genes, most of these selections are necessar-
ily false positives. Indeed, only ≈ 4 of the 39 variants selected
by these methods was in fact causal.

The composite MCP, although it in principle uses group
information, fails to do so effectively in this problem, per-
forming rather similarly to the univariate and lasso methods.
As shown in Figure 2, the degree of coupling in the com-
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Table 1
GAW results for methods that carry out variant-level
selection; each method selected its top 39 variants

Number of Causal variants
genes selected selected

Univariate 30.1 3.9
Lasso 35.5 4.3
MCP 36.7 3.3
SGL 23.6 5.1
Composite 36.0 3.9
GEL 6.3 11.3

posite MCP diminishes with group size. For these data, the
median group size among the 9 causative genes was 10, with
two genes (FLT1 and HIF3A) containing over 20 variants.
Given these group sizes, it is perhaps unsurprising that the
composite MCP performed similarly to lasso.

Unlike the other methods, the SGL and the GEL suc-
cessfully incorporate grouping information to increase the
accuracy of variable selection. However, GEL was far more
effective than SGL at utilizing group information. Its 39
selections are concentrated into just ≈ 6 groups, roughly
matching the actual degree of grouping in the generating
model. By leveraging this group information, GEL is able to
achieve much greater accuracy with its selection of variants,
correctly identifying on average 2–3 times the number of
causal variants identified by the other methods.

Table 2 presents the accuracy of the gene-level selection
methods. The most striking result is the extremely poor per-
formance of the group lasso; in 178 out of the 200 simulations,
it failed to select even a single causative gene. The reason for
this would seem to be the fact that if the group lasso selects
a gene, each of its variants enters the model. Even in the
causative genes, however, most variants are not causally re-
lated to the outcome; for example, only 3 out of the 21 HIF3A
variants have a nonzero coefficient in the generating model.
The group lasso displays a strong bias here toward selecting
single-variant groups, reflected in the fact that even though it
selected 9 genes and all variants in those genes, this amounted
to only 9.4 variants. The SGL performs somewhat better than
the group lasso, but still much worse than gene-level testing.

As in Table 1 GEL emerges as the best of the methods
being compared. It selects, on average, the largest number of

Table 2
GAW results for methods that carry out gene-level selection;

each method selected its top 9 genes

Number of Causal genes
variants selected selected

Collapse 146.5 1.3
Multivariate 98.8 1.4
Group lasso 9.4 0.1
SGL 14.9 0.4
Composite 10.9 1.5
GEL 45.4 1.6

causal genes, although the difference is not as striking as in
the variant-level comparison, where GEL outperformed hy-
pothesis testing by 286%: here, GEL outperforms the “col-
lapse” testing by 23% and “multivariate” testing by 12%. An
added benefit of GEL is that, unlike the two hypothesis test
approaches, GEL is able to narrow down the list of important
variants to 45 (quite close to the true number of 39), while the
multivariate and collapse approaches produce 99 and 146, re-
spectively. Furthermore, unlike a hypothesis testing approach,
GEL produces estimates of effect sizes and a predictive model.

5. Discussion

In this paper, we have introduced the notion of group expo-
nential penalties as a method for leveraging grouping infor-
mation among features in order to achieve bi-level variable
selection—the selection of important groups as well as the
important individual predictors in those groups. This idea is
both theoretically attractive and practically useful. In partic-
ular, we demonstrate a clear potential for group exponential
penalties as a method for the analysis of rare variants in ge-
netic association studies. The approach is computationally
efficient, scales up to high dimensions, and publicly available
via the grpreg package. Although we have concentrated on
linear regression in this paper, our implementation of GEL
for logistic regression is also implemented in grpreg, and the
idea extends readily to other regression models such as Pois-
son and proportional hazards models.

A potential further extension of this idea is the “group
exponential MCP” estimator alluded to at the end of Sec-
tion 2.2, in which the inner L1 norm is replaced by the mini-
max concave penalty. The L1 norm introduces a bias toward
zero that may diminish estimation accuracy. This bias is alle-
viated by the outer exponential penalty, but not completely
eliminated. A group exponential MCP estimator may be able
to improve upon this result.

At the same time, however, the GEL offers a rather elegant
simplicity in that there seems to be little need to tune τ, and
thereby concern oneself only with λ during analysis; this is a
considerable asset in practice. Indeed, the GEL with τ = 1/3
exhibits remarkably robust improvements in performance over
existing methods in terms of both estimation and selection
accuracy across a range of group sizes and degrees of grouping.

6. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections 2
and 3 are available with this paper at the Biometrics website
on Wiley Online Library.
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