
Writing cleaner and more
powerful SAS code using

macros

Patrick Breheny

Why Use Macros?

• Macros automatically generate SAS code

• Macros allow you to make more dynamic,
complex, and generalizable SAS programs

• Macros can greatly reduce the effort required to
read and write SAS Code

Outline

1. Macro Basics

2. Working with Macro Strings

3. Getting More Out of Macros:

a) Program Control

b) Interfacing with Data

The Compilation of SAS Programs

• SAS code is compiled and executed alternately in
steps:

– For example, a data step will be compiled and executed,
then a procedure step will be compiled and executed

• IMPORTANT: Macros are resolved PRIOR to the
compilation and execution of the SAS code

SAS Compilation (cont’d)

• Code without Macros:

• Code with Macros:

SAS
Code Program Results

Compilation Execution

SAS
Code
with
Macros

Results
Compilation Execution

Macro
Processing

SAS
Code
without
Macros

Macro Basics

• The two basic elements of macro code are macro
variables and macros. In SAS code:

– &name refers to a macro variable

– %name refers to a macro

• Macro code consists of these two elements and
their relationship to each other

Macro Variables

• Macro variables hold the value of text strings

• The easiest way to assign a value to a macro
variable is using %let:

%let mac_var = Hello!!;
%put The value of mac_var is &mac_var;

The value of mac_var is Hello!!

• Note that:

– The value of a macro variable is referenced using &

– Text without %’s or &’s (called constant text) is unaffected by
macro processing

– Many SAS data step functions (like put) have macro analogs

A More Realistic Example

%let state = IA;

proc sort data=survey_&state
out=sorted_&state;

by county;
run;

proc means data=sorted_&state;
title "&state Results";
by county;

run;

proc sort data=survey_IA
out=sorted_IA;

by county;
run;

proc means data=sorted_IA;
title “IA Results";
by county;

run;

SAS Code
SAS Code after

macro processing
(invisible)

• Suppose we have separate data sets for each state, and
wish to obtain county-level data for a given state without
rewriting our code:

Example with Multiple Variables

%let state = IA;
%let sortvar = Age;
%let order = ; *Note that macro variables can be empty;

proc sort data=survey_&state out=county_&state;
by county;

run;

proc means data=county_&state noprint;
by county;
output out=county_totals_&state mean=;

run;

proc sort data=county_totals_&state out=sorted_&state;
by &order &sortvar;

run;

proc print data=sorted_&state;
title "&state Results by &sortvar";

run;

• The advantages of this approach are even more prominent
when many parameters are present:

Macros
• To generate more complicated SAS code, we

must use macros, which are assigned using
%macro and %mend statements:

%macro reg;
proc reg data=dataset;

model outcome = age sex;
run;
%mend reg;

• A macro that has been assigned can then be
referenced with %name. The above regression
procedure would be run with:

%reg;

Macro Parameters
• The ability to pass parameters to macros make

them much more useful.

• For example, in regression, we often vary the set
of predictor variables without changing the rest
of the code:

%macro reg(predictors);
proc reg data=dataset;

model outcome = &predictors;
run;
%mend reg;

%reg(age);
%reg(sex);
%reg(age sex);

Positional vs. Keyword Parameters

• One can specify macro parameters in two ways.

• Each approach has its advantages.

Positional Keyword

%macro reg(predictors);
proc reg data=dataset;

model outcome = &predictors;
run;
%mend reg;

%reg(age sex);

%macro reg(predictors = age sex);
proc reg data=dataset;

model outcome = &predictors;
run;
%mend reg;

%reg;
%reg(predictors=age);

• Note that with keyword parameters, default settings can be
assigned

Passing Multiple Parameters

%macro county_sort(sortvar, state=IA, order=);
proc sort data=survey_&state out=county_&state;

by county;
run;
proc means data=county_&state noprint;

by county;
output out=county_totals_&state mean=;

run;
proc sort data=county_totals_&state out=sorted_&state;

by &order &sortvar;
run;
proc print data=sorted_&state;

title "&state Results by &sortvar";
run;
%mend county_sort;

%county_sort(age)
%county_sort(mortality, state=FL, order=descending)

• Usually, a combination of positional and keyword
parameters makes the most sense (positional parameters
must come before keyword parameters):

Working with Macro Strings

The Implicit Handling of Strings
• Because macros and macro variables can only be

assigned strings of text, string functions on
macro variables are handled implicitly:

– Assignment: No quotes are necessary around the value
of a macro variable (%let mac_var = Hello;)

– Concatenation: survey_&state concatenates &state with
“survey_”

• Most of the time, this is very convenient, but any
time you avoid giving explicit instructions,
computers may do something other than what
you want!

Concatenation
• The expression survey_&state is unambiguous,

but what about &state_survey?

%put survey_&state;
survey_IA

%put &state_survey;
WARNING: Apparent symbolic reference
STATE_SURVEY not resolved.
&state_survey

• A period is the signal in SAS to end a macro
variable name:

%put &state._survey;

IA_survey

Concatenation (cont’d)

Suppose we wished to import data from a file
called “survey_IA.xls”

proc import datafile="H:\Data\survey_&state..xls"
out=survey_&state
replace;

run;

proc import datafile="H:\Data\survey_&state.xls"
out=survey_&state
replace;

run;

doesn’t work, but

does

Double vs. Single Quotes

• Double quotes and single quotes affect macro
variables differently:

proc import datafile=‘H:\Macro Workshop\survey_&state..xls’
out=survey_&state
replace;

run;

ERROR: Unable to import, file
H:\Macro Workshop\survey_&state..xls does not exist.

• Note that macro variables inside single quotes are not
resolved

SAS Characters with Special Meaning
• Suppose we wish to assign a macro variable a

string with semicolons, commas, or quotes

• The macro function %str can be used, for
example, to pass an entire statement into a
macro:

%macro reg(predictors, options);
proc reg data=dataset;

model outcome = &predictors;
&options

run;
%mend reg;

%reg(age sex, %str(mtest age, age - sex / canprint;));

Evaluating Numeric Strings
• Remember, macro variables are strings, not

numeric quantities:
%let sum = 1+1;
%put ∑

1+1

• The function %eval can be used to obtain the
(integer) numeric value of an expression
containing macro variables:

%let total = %eval(&sum);
%put &total;

2

• Note: Floating point evaluations can be performed with
%sysevalf

Getting More Out of Macros

Program Control

• The most powerful feature of macros is their
ability to use conditional and iterative statements

• Data steps provide these same statements, but
their effect is limited to a single data step

• Program control through macros can extend
across multiple data steps and procedures

Conditional Statements

• Conditional statements in macros work just like
those in data steps

%if (&state eq IA) %then %put Iowa;

%else %put Not Iowa;

%do Blocks

• Just as in data steps, compound statements are
grouped using %do and %end:

%if (&state eq IA) %then

%do;

%put Iowa;

%put Corn grows here;

%end;

%else %put Not Iowa;

Iterative Statements

• Iterative macro statements will also be familiar to
anyone who has used the data step versions:

%do i = 1 %to 10;

%put %eval(&i**2);

%end;

• Note: %do…%while and %do…%until statements are also
available

Macro Program Control Statements

• Macro program control statements are not valid
in open code

• They must be contained within macros

Macro “Arrays”
• Suppose we created a list of states:

• If we were in the ith iteration of a loop, how would
we access the ith member of the list?

%let state1 = AL;
%let state2 = AK;

.

.

.
%let state50 = WY;

%put &state&i;

IA2

Macro “Arrays” (cont’d)

• Instead, we must force the macro processor to
make multiple passes over our code:

&&state&i

1st Pass

&state2

2nd Pass

AK

Example

• Suppose we wish to create a report by state of
county rankings for a number of categories:

%macro report;
%do i = 1 %to 50;

%do j = 1 %to 25;
%county_sort(&&var&j,

state=&&state&i,
order=descending);

%end;
%end;

%mend report;

%report;

Nesting Macro Calls
• As we just saw, it is often a good idea to nest

macro calls:

• It is not a good idea to nest macro definitions:

%macro a;
SAS code…
%b;
SAS code…

%mend a;

%macro a;
SAS code…
%macro b;

SAS code…
%mend b;
SAS code…

%mend a;

Nesting Macro Calls (cont’d)

%macro print_sums;
%do i = 1 %to 10;

%put %sum(&i);
%end;

%mend;

%macro sum(n);
%let current_sum=0;
%do i = 1 %to %eval(&n);

%let current_sum=¤t_sum +&i;
%end;
%eval(¤t_sum)

%mend;

• When nesting macro calls, be careful to avoid variable
collisions:

• Scoping issues can be avoided by using %local to define
macro variables

Interfacing With Data

• Suppose we submitted the following code to SAS:

data newdata;
set survey_IA;
%let AgeSq = Age**2;

run;

• What would happen?

Interfacing With Data (cont’d)

• Because macros are resolved prior to the
execution of a data step, special routines are
required for macros to communicate with data:

– symput puts data into a macro

– symget extracts data from a macro

%put &AgeSq;

Age**2

• Answer:

How symput Works

• Calling the symput routine pauses execution of the
data step and writes a data value to a macro
variable

• Syntax:

CALL SYMPUT(‘macro-variable’, data-variable);

• Both arguments to symput can be expressions

• IMPORTANT: You CANNOT access a macro variable
within the same data step it is created

symputx: A Better symput
• CALL SYMPUTX is a variant of SYMPUT introduced

in SAS 9 that has similar syntax, but handles the
input of numeric values better

• The following example illustrates the difference
between the two commands:

data _null_;
call symput('symput',5);
call symputx('symputx',5);

run;

%put |&symput|;
%put |&symputx|;

| 5|
|5|

Example
• Suppose we want to compare two groups, but the preferred

method depends on sample size:
%macro compare(dsn, class, cutoff=20);
data _null_;
set &dsn nobs=nobs;
call symputx('nobs',nobs);
stop;

run;
%if (&nobs < &cutoff) %then %do;
proc npar1way data=&dsn;

class &class;
run;
%end;

%else %do;
proc ttest data=&dsn;

class &class;
run;
%end;

%mend compare;

%compare(mydata,age);

How symget works

• symget is much more straightforward:

data-variable = symget(‘macro-variable’)

Putting it all Together

• As a final example, suppose we want to create a
list of indicator variables for the values of a
categorical variable in a data set

• Note that if we don’t know the values in
advance, we have to approach the problem in
two steps

1. Determine the new variables we are to create

2. Create a data set in which we assign values to the new
variables

Putting it all Together (cont’d)
• We could approach the problem as follows:

%macro make_ind(dsn,cat);
proc sort data=&dsn out=sorted;

by &cat;
run;
data _null_;

set sorted end=eof;
by &cat;
if first.&cat then

do;
tot+1;
call symputx("&cat.ind"||compress(tot),compress(&cat));

end;
if eof then call symputx('tot',tot);

run;

(cont’d)…

Putting it all Together (cont’d)

data &dsn._ind;
set &dsn;
%do i=1 %to %eval(&tot);

if (compress(&cat) eq "&&&cat.ind&i") then &&&cat.ind&i = 1;
else &&&cat.ind&i = 0;

%end;
run;
%mend make_ind;

(cont’d)…

Putting it all Together (cont’d)

%make_ind(survey_IA,city);
proc print data=survey_IA_ind;
run;

Cedar New
Obs County City SBP Age Ames Rapids Albin

1 Story Ames 150 60 1 0 0
2 Linn Cedar Rapids 180 45 0 1 0
3 Allamakee New Albin 110 25 0 0 1
4 Story Ames 120 50 1 0 0

References

• The SAS Macro Language Reference:

– http://support.sas.com/documentation/onlinedoc/91pdf/
index_912.html

• Carpenter, Art. 2004. Carpenter’s Complete
Guide to the SAS® Macro Language, Second
Edition. Cary, NC: SAS Institute Inc.

	Writing cleaner and more powerful SAS code using macros
	Why Use Macros?
	Outline
	The Compilation of SAS Programs
	SAS Compilation (cont’d)
	Macro Basics
	Macro Variables
	A More Realistic Example
	Example with Multiple Variables
	Macros
	Macro Parameters
	Positional vs. Keyword Parameters
	Passing Multiple Parameters
	Working with Macro Strings
	The Implicit Handling of Strings
	Concatenation
	Concatenation
	Concatenation
	Concatenation (cont’d)
	Concatenation (cont’d)
	Double vs. Single Quotes
	SAS Characters with Special Meaning
	Evaluating Numeric Strings
	Evaluating Numeric Strings
	Evaluating Numeric Strings
	Getting More Out of Macros
	Program Control
	Conditional Statements
	%do Blocks
	Iterative Statements
	Macro Program Control Statements
	Macro “Arrays”
	Macro “Arrays”
	Macro “Arrays” (cont’d)
	Example
	Nesting Macro Calls
	Nesting Macro Calls (cont’d)
	Interfacing With Data
	Interfacing With Data (cont’d)
	How symput Works
	symputx: A Better symput
	Example
	How symget works
	Putting it all Together
	Putting it all Together (cont’d)
	Putting it all Together (cont’d)
	Putting it all Together (cont’d)
	References

