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Why Use Macros?

• Macros automatically generate SAS code

• Macros allow you to make more dynamic, 
complex, and generalizable SAS programs

• Macros can greatly reduce the effort required to 
read and write SAS Code
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The Compilation of SAS Programs

• SAS code is compiled and executed alternately in 
steps:

– For example, a data step will be compiled and executed, 
then a procedure step will be compiled and executed

• IMPORTANT: Macros are resolved PRIOR to the 
compilation and execution of the SAS code



SAS Compilation (cont’d)
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Macro Basics

• The two basic elements of macro code are macro 
variables and macros.  In SAS code:

– &name refers to a macro variable

– %name refers to a macro

• Macro code consists of these two elements and 
their relationship to each other



Macro Variables

• Macro variables hold the value of text strings

• The easiest way to assign a value to a macro 
variable is using %let:

%let mac_var = Hello!!;
%put The value of mac_var is &mac_var;

The value of mac_var is Hello!!

• Note that:

– The value of a macro variable is referenced using &

– Text without %’s or &’s (called constant text) is unaffected by 
macro processing

– Many SAS data step functions (like put) have macro analogs



A More Realistic Example

%let state = IA;

proc sort data=survey_&state
out=sorted_&state;

by county;
run;

proc means data=sorted_&state;
title "&state Results";
by county;

run;

proc sort data=survey_IA
out=sorted_IA;

by county;
run;

proc means data=sorted_IA;
title “IA Results";
by county;

run;

SAS Code
SAS Code after

macro processing
(invisible)

• Suppose we have separate data sets for each state, and 
wish to obtain county-level data for a given state without 
rewriting our code:



Example with Multiple Variables

%let state = IA;
%let sortvar = Age;
%let order = ; *Note that macro variables can be empty;

proc sort data=survey_&state out=county_&state;
by county;

run;

proc means data=county_&state noprint;
by county;
output out=county_totals_&state mean=;

run;

proc sort data=county_totals_&state out=sorted_&state;
by &order &sortvar;

run;

proc print data=sorted_&state;
title "&state Results by &sortvar";

run;

• The advantages of this approach are even more prominent 
when many parameters are present:



Macros
• To generate more complicated SAS code, we 

must use macros, which are assigned using 
%macro and %mend statements:

%macro reg;
proc reg data=dataset;

model outcome = age sex;
run;
%mend reg;

• A macro that has been assigned can then be 
referenced with %name. The above regression 
procedure would be run with:

%reg;



Macro Parameters
• The ability to pass parameters to macros make 

them much more useful.

• For example, in regression, we often vary the set 
of predictor variables without changing the rest 
of the code:

%macro reg(predictors);
proc reg data=dataset;

model outcome = &predictors;
run;
%mend reg;

%reg(age);
%reg(sex);
%reg(age sex);



Positional vs. Keyword Parameters

• One can specify macro parameters in two ways.

• Each approach has its advantages.

Positional Keyword

%macro reg(predictors);
proc reg data=dataset;

model outcome = &predictors;
run;
%mend reg;

%reg(age sex);

%macro reg(predictors = age sex);
proc reg data=dataset;

model outcome = &predictors;
run;
%mend reg;

%reg;
%reg(predictors=age);

• Note that with keyword parameters, default settings can be 
assigned



Passing Multiple Parameters

%macro county_sort(sortvar, state=IA, order=);
proc sort data=survey_&state out=county_&state;

by county;
run;
proc means data=county_&state noprint;

by county;
output out=county_totals_&state mean=;

run;
proc sort data=county_totals_&state out=sorted_&state;

by &order &sortvar;
run;
proc print data=sorted_&state;

title "&state Results by &sortvar";
run;
%mend county_sort;

%county_sort(age)
%county_sort(mortality, state=FL, order=descending)

• Usually, a combination of positional and keyword 
parameters makes the most sense (positional parameters 
must come before keyword parameters):



Working with Macro Strings



The Implicit Handling of Strings
• Because macros and macro variables can only be 

assigned strings of text, string functions on 
macro variables are handled implicitly:

– Assignment: No quotes are necessary around the value 
of a macro variable (%let mac_var = Hello;)

– Concatenation: survey_&state concatenates &state with 
“survey_”

• Most of the time, this is very convenient, but any 
time you avoid giving explicit instructions, 
computers may do something other than what 
you want!



Concatenation
• The expression survey_&state is unambiguous, 

but what about &state_survey?

%put survey_&state;
survey_IA

%put &state_survey;
WARNING: Apparent symbolic reference
STATE_SURVEY not resolved.
&state_survey

• A period is the signal in SAS to end a macro 
variable name:

%put &state._survey;

IA_survey



Concatenation (cont’d)

Suppose we wished to import data from a file 
called “survey_IA.xls”

proc import datafile="H:\Data\survey_&state..xls"
out=survey_&state
replace;

run;

proc import datafile="H:\Data\survey_&state.xls"
out=survey_&state
replace;

run;

doesn’t work, but

does



Double vs. Single Quotes

• Double quotes and single quotes affect macro 
variables differently:

proc import datafile=‘H:\Macro Workshop\survey_&state..xls’
out=survey_&state
replace;

run;

ERROR: Unable to import, file
H:\Macro Workshop\survey_&state..xls does not exist.

• Note that macro variables inside single quotes are not 
resolved



SAS Characters with Special Meaning
• Suppose we wish to assign a macro variable a 

string with semicolons, commas, or quotes

• The macro function %str can be used, for 
example, to pass an entire statement into a 
macro:

%macro reg(predictors, options);
proc reg data=dataset;

model outcome = &predictors;
&options

run;
%mend reg;

%reg(age sex, %str(mtest age, age - sex / canprint;));



Evaluating Numeric Strings
• Remember, macro variables are strings, not 

numeric quantities:
%let sum = 1+1;
%put &sum;

1+1

• The function %eval can be used to obtain the 
(integer) numeric value of an expression 
containing macro variables:

%let total = %eval(&sum);
%put &total;

2

• Note: Floating point evaluations can be performed with 
%sysevalf



Getting More Out of Macros



Program Control

• The most powerful feature of macros is their 
ability to use conditional and iterative statements

• Data steps provide these same statements, but 
their effect is limited to a single data step

• Program control through macros can extend 
across multiple data steps and procedures



Conditional Statements

• Conditional statements in macros work just like 
those in data steps

%if (&state eq IA) %then %put Iowa;

%else %put Not Iowa;



%do Blocks

• Just as in data steps, compound statements are 
grouped using %do and %end:

%if (&state eq IA) %then

%do;

%put Iowa;

%put Corn grows here;

%end;

%else %put Not Iowa;



Iterative Statements

• Iterative macro statements will also be familiar to 
anyone who has used the data step versions:

%do i = 1 %to 10;

%put %eval(&i**2);

%end;

• Note: %do…%while and %do…%until statements are also 
available



Macro Program Control Statements

• Macro program control statements are not valid 
in open code

• They must be contained within macros



Macro “Arrays”
• Suppose we created a list of states:

• If we were in the ith iteration of a loop, how would 
we access the ith member of the list?

%let state1 = AL;
%let state2 = AK;

.

.

.
%let state50 = WY;

%put &state&i;

IA2



Macro “Arrays” (cont’d)

• Instead, we must force the macro processor to 
make multiple passes over our code:

&&state&i

1st Pass

&state2

2nd Pass

AK



Example

• Suppose we wish to create a report by state of 
county rankings for a number of categories:

%macro report;
%do i = 1 %to 50;

%do j = 1 %to 25;
%county_sort(&&var&j,

state=&&state&i,
order=descending);

%end;
%end;

%mend report;

%report;



Nesting Macro Calls
• As we just saw, it is often a good idea to nest

macro calls:

• It is not a good idea to nest macro definitions:

%macro a;
SAS code…
%b;
SAS code…

%mend a;

%macro a;
SAS code…
%macro b;

SAS code…
%mend b;
SAS code…

%mend a;



Nesting Macro Calls (cont’d)

%macro print_sums;
%do i = 1 %to 10;

%put %sum(&i);
%end;

%mend;

%macro sum(n);
%let current_sum=0;
%do i = 1 %to %eval(&n);

%let current_sum=&current_sum +&i;
%end;
%eval(&current_sum)

%mend;

• When nesting macro calls, be careful to avoid variable 
collisions:

• Scoping issues can be avoided by using %local to define 
macro variables



Interfacing With Data

• Suppose we submitted the following code to SAS:

data newdata;
set survey_IA;
%let AgeSq = Age**2;

run;

• What would happen?



Interfacing With Data (cont’d)

• Because macros are resolved prior to the 
execution of a data step, special routines are 
required for macros to communicate with data:

– symput puts data into a macro

– symget extracts data from a macro

%put &AgeSq;

Age**2

• Answer:



How symput Works

• Calling the symput routine pauses execution of the 
data step and writes a data value to a macro 
variable

• Syntax:

CALL SYMPUT(‘macro-variable’, data-variable);

• Both arguments to symput can be expressions

• IMPORTANT: You CANNOT access a macro variable 
within the same data step it is created



symputx: A Better symput
• CALL SYMPUTX is a variant of SYMPUT introduced 

in SAS 9 that has similar syntax, but handles the 
input of numeric values better

• The following example illustrates the difference 
between the two commands:

data _null_;
call symput('symput',5);
call symputx('symputx',5);

run;

%put |&symput|;
%put |&symputx|;

|           5|
|5|



Example
• Suppose we want to compare two groups, but the preferred 

method depends on sample size:
%macro compare(dsn, class, cutoff=20);
data _null_;
set &dsn nobs=nobs;
call symputx('nobs',nobs);
stop;

run;
%if (&nobs < &cutoff) %then %do;
proc npar1way data=&dsn;

class &class;
run;
%end;

%else %do;
proc ttest data=&dsn;

class &class;
run;
%end;

%mend compare;

%compare(mydata,age);



How symget works

• symget is much more straightforward:

data-variable = symget(‘macro-variable’)



Putting it all Together

• As a final example, suppose we want to create a 
list of indicator variables for the values of a 
categorical variable in a data set

• Note that if we don’t know the values in 
advance, we have to approach the problem in 
two steps

1. Determine the new variables we are to create

2. Create a data set in which we assign values to the new 
variables



Putting it all Together (cont’d)
• We could approach the problem as follows:

%macro make_ind(dsn,cat);
proc sort data=&dsn out=sorted;

by &cat;
run;
data _null_;

set sorted end=eof;
by &cat;
if first.&cat then

do;
tot+1;
call symputx("&cat.ind"||compress(tot),compress(&cat));

end;
if eof then call symputx('tot',tot);

run;

(cont’d)…



Putting it all Together (cont’d)

data &dsn._ind;
set &dsn;
%do i=1 %to %eval(&tot);

if (compress(&cat) eq "&&&cat.ind&i") then &&&cat.ind&i = 1;
else &&&cat.ind&i = 0;

%end;
run;
%mend make_ind;

(cont’d)…



Putting it all Together (cont’d)

%make_ind(survey_IA,city);
proc print data=survey_IA_ind;
run;

Cedar     New
Obs   County       City            SBP    Age    Ames    Rapids    Albin

1     Story        Ames            150     60      1        0        0
2     Linn         Cedar Rapids    180     45      0        1        0
3     Allamakee    New Albin       110     25      0        0        1
4     Story        Ames            120     50      1        0        0
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