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Introduction

So far in this class, we have spent a lot of time talking about
the selection of individual variables

In many regression problems, however, predictors are not
distinct but arise from common underlying factors

The most obvious example of this occurs when we represent a
categorical factor by a group of indicator functions, but this
actually comes up fairly often:

Continuous features may be represented by a group of basis
functions
Groups of measurements may be taken in the hopes of
capturing unobservable latent variables
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Potential advantages of grouping

Today’s lecture will look at these cases where features can be
organized into related groups, and focus on methods for
selecting important groups and estimating their effects

One could, of course, still use methods like the lasso in these
cases

However, if there is indeed information contained in the
grouping structure, by ignoring it these methods will likely be
inefficient

Furthermore, by selecting important groups of variables, we
should obtain models that are more sensible and interpretable
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Notation

To proceed in the grouped variable case, let us extend our usual
notation as follows:

We denote X as being composed of J groups
X1,X2, . . . ,XJ , with Kj denoting the size of group j; i.e.,∑

jKj = p

As usual, we are interested in estimating a vector of
coefficients β using a loss function L which quantifies the
discrepancy between the observations y and the linear
predictors η = Xβ =

∑
j Xjβj , where βj represents the

coefficients belonging to the jth group

Covariates that do not belong to a group may be thought of
as a group of one
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The group lasso penalty

Consider, then, the following penalty, known as the group
lasso penalty:

Q(β|X,y) = L(β|X,y) +
∑
j

λj
∥∥βj∥∥

This is a natural extension of the lasso to the grouped variable
setting: instead of penalizing the magnitude (|βj |) of
individual coefficients, we penalize the magnitude (‖βj‖) of
groups of coefficients

To ensure that the same degree of penalization is applied to
large and small groups, λj = λ

√
Kj ; we will discuss the

reasoning behind this in a bit
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Group orthonormal setting

To gain insight into other penalties, we have considered the
orthonormal setting in which xTj xk = 0 for j 6= k

The equivalent for the grouped variable case is to suppose
that XT

j Xk = 0 for j 6= k

In what follows, we will also suppose that 1
nXT

j Xj = I for all
j; we will discuss this condition further in the next section
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Group orthonormal solution

Theorem: Suppose XT
j Xk = 0 for j 6= k and 1

nXT
j Xj = I for all

j. Letting zj =
1
nXT

j y denote the OLS solution, the value of β
that minimizes

1

2n
(y −Xβ)T (y −Xβ) +

∑
j

λj
∥∥βj∥∥

is given by

β̂j = S(‖zj‖, λj)
zj
‖zj‖

,

where S(z, λ) denotes the soft-thresholding operator
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Geometry of solution

β1

β 2

−0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

2.0

β1

β 2

−0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

2.0

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 8/26



Grouped variable selection
Standardization and algorithms

Case study: Genetic association study

Motivation
Group-orthonormal solution

Group MCP and SCAD

The fact that group penalization reduces to a one-dimensional
problem in the group orthonormal setting means that
extending it to MCP and SCAD penalties is straightforward

For example, if we replace the group lasso penalty with a
group MCP penalty P (β) =

∑
j MCP(‖βj‖;λj , γ), the

solution is

β̂j = F (‖zj‖, λj , γ)
zj
‖zj‖

,

where F (z|λj , γ) is the firm thresholding penalty

Likewise for SCAD and its thresholding solution

Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 9/26



Grouped variable selection
Standardization and algorithms

Case study: Genetic association study

Standardization at the group level
Algorithms

A closer look at the orthonormality assumption

To solve for β̂, one’s first instinct might be to apply this
closed-form solution to each group sequentially, as we did with
coordinate descent

We need to be careful, however: our closed form solution
assumed 1

nXT
j Xj = I, which is not the case in general

Nevertheless, it turns out we can always make this assumption
hold by transforming to the orthonormal case and then
transforming back to obtain solutions on the original scale
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Orthonormalizing Xj

Consider the singular value decomposition of group j:

1

n
XT
j Xj = QjΛjQ

T
j ,

where Λj is a diagonal matrix containing the eigenvalues of
1
nXT

j Xj and Qj is an orthonormal matrix of its eigenvectors

Now, we may construct a linear transformation

X̃j = XjQjΛ
−1/2
j with the following properties:

1

n
X̃T
j X̃j = I

X̃jβ̃j = Xj(QjΛ
−1/2
j β̃j)

where β̃j is the solution on the orthonormalized scale
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Remarks

This procedure is not terribly expensive from a computational
standpoint; although computing the SVD requires O(p3)
steps, the decompositions are being applied only to the
groups, not the entire design matrix

Furthermore, the decompositions need only be computed once
initially, not with every iteration

We could use a Cholesky decomposition here instead of a
SVD, but the advantage of the SVD is that it works for
groups that do not have full rank
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Group standardization

Orthonormalization is essentially the grouped-variable
equivalent of standardization

To explore this point further, note that we could consider
penalizing on the scale of the linear predictors, not the
coefficients themselves: Penalty = λ

∑
j‖ηj‖, where

ηj = xjβj for the single-variable case or Xjβj in the
grouped-variable case

Note that this reduces to the lasso penalty for standardized
design matrix and the group lasso penalty when the groups
have been orthonormalized
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Connection with χ2/F tests

As a final justification for group orthonormalization, consider
the form of the (UMPI) χ2/F test for adding a group in
classical linear regression

In that case, the test statistic for H0 : βj = 0 takes the form

‖Pjr0‖2 ≥ σ2χ2
Kj ,1−α

(or ≥ σ̂2FKj ,rdf,1−α), where Pj = Xj(X
T
j Xj)

−1XT
j is the

orthogonal projection operator for group j

Now, since ‖Pjr0‖ ∝ ‖Zj‖ for an orthonormal group, we can
see that the UMPI χ2 test is essentially equivalent to the
group lasso inclusion condition ‖Zj‖ > λj , provided that λj
includes a

√
Kj term to account for the size of group j
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Algorithm

With these ideas in place, we can apply the coordinate descent
idea in a groupwise fashion; this algorithm is known as group
descent, blockwise coordinate descent, or the “shooting algorithm”

repeat
for j = 1, 2, . . . , J

zj = XT
j r + βj

β′j ← S (‖zj‖, λj) zj/‖zj‖
r′ ← r−Xj(β

′
j − βj)

until convergence

For MCP/SCAD, we would replace the soft thresholding step with
the appropriate thresholding operator
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Remarks

Although there is an initial cost in terms of computing the
SVD for each group, once this is done the cost per iteration
for the group descent algorithm is simply O(np)

Because the penalty is separable in terms of the groups βj ,
and because we are updating whole groups at once, the
algorithm is guaranteed to decrease the objective function
with every step and to converge to a minimum, as it was for
the ordinary lasso

Extensions to other loss functions (GLMs, etc.) follow along
the lines we discuss in the previous topic
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Mullins study

As a case study, we will consider data from a study at the
University of Iowa investigating the genetic causes of primary
open-angle glaucoma (POAG) and age-related macular
degeneration (AMD)

In the study, 400 AMD patients and 400 POAG patients were
recruited, and their genotype determined at 500,000 genetic
loci, the idea being that each group could serve as the control
group group for the other disease

We will not consider all 500,000 genetic loci, but rather a
subset of 532 SNPs from 30 genes that have been previously
indicated in AMD
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There are two ways we could consider grouping the data here,
and for the sake of illustration, we will do both

At each genetic loci, there are three possibilities: AA, AB,
BB, where A and B stand for the two alleles present in the
population at those loci

Thus, we could consider constructing a design matrix with
indicators for each possibility and group by genetic locus
(p = 1596, J = 532)

Alternatively, we could represent each locus by the number of
B alleles (0/1/2) and group by the gene that the locus
belongs to (p = 532, J = 30)
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Fitting group lasso (and group MCP/SCAD) models can be
carried out using the R package grpreg

In what follows, suppose X is the 800× 532 matrix of 0/1/2
counts, XX is the 800× 1, 596 matrix of indicators, Gene is a
length 532 vector denoting the gene that each column of X
belongs to, and Locus is a length 1,596 vector denoting the
locus that column of XX belongs to

Here, Locus and Gene are both factors or unique IDs
(integers, character strings) that can be coerced into factors
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grpreg (cont’d)

The syntax of grpreg is similar to glmnet and ncvreg,
although we must also pass the function a group option that
describes the grouping structure

So, for the first approach (group by gene) we would have

cv.grpreg(X, y, group=Gene, family="binomial")

while for the second (group by locus) we would have

cv.grpreg(XX, y, group=Locus, family="binomial")

The same sorts of downstream methods such as
plot(cvfit), summary(cvfit), and predict(cvfit) are
available after the models have been fit
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Misclassification error: Grouping by gene
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Remarks

In this case, there is a subtle, but not overwhelming,
advantage to grouping

Grouping achieves a slightly higher R2, 0.040 to 0.037, but
the two methods have the same minimum misclassification
error of 0.40

However, at their respective λ values for which that minimum
misclassification error is achieved, the ordinary lasso selects
loci ranging across 20 of the 30 genes, while the group lasso
confines its selects to just 11 genes, achieving greater sparsity
at the group level and, likely, more interpretable results
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Remarks

Incorporating grouping information is perhaps a bit more
convincing in this case, as the grouped approach appears to
confer a clear advantage in terms of more accurate predictions

The group lasso model achieves a better R2 (0.041 to 0.034)
and misclassification error (0.39 to 0.41) than the ordinary
lasso
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