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Introduction

In our final lecture, we will explore some interesting ways of
applying/extending the penalties we have learned about so far in
this course to three other statistical methods:

• Additive models
• Principal components analysis
• Graphical models
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Basis functions

• Suppose for the moment that we have just a single feature x
and we are interested in estimating E(y|x) = f(x)

• A common approach for extending the linear model f(x) = xβ
is to augment x with additional, known functions of x:

f(x) =
M∑

m=1
βmhm(x),

where the {hm} are called basis functions
• Because the basis functions {hm} are prespecified and the

model is linear in the new variables, ordinary least squares
approaches can be used (at least in low-dimensional settings)
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Problems with polynomial regression

• This idea is not new to you, as you have certainly worked with
polynomial terms before

• However, polynomial terms introduce undesirable side effects:
each observation affects the entire curve, even for x values far
from the observation

• Not only does this introduce bias, but it also results in
extremely high variance near the edges of the range of x

• As Hastie et al. (2009) put it, “tweaking the coefficients to
achieve a functional form in one region can cause the function
to flap about madly in remote regions”
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Problems with polynomial regression (cont’d)
To illustrate this, consider the following simulated example (gray
lines are models fit to 100 observations arising from the true f ,
colored red):
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Splines

• For this reason, local basis functions, which ensure that a
given observation affects only the nearby fit, not the fit of the
entire line, are often preferred

• We will focus on a specific type of local bases called splines,
which are just piecewise polynomials joined together to make
a single smooth curve

• To understand splines, we will gradually build up a piecewise
model, starting at the simplest one: the piecewise constant
model

• First, we partition the range of x into K + 1 intervals by
choosing K points {ξk}K

k=1 called knots
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The piecewise constant model (cont’d)
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The piecewise linear model
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The continuous piecewise linear model
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Basis functions for piecewise continuous models

These constraints can be incorporated directly into the basis
functions:

h1(x) = 1, h2(x) = x, h3(x) = (x−ξ1)+, h4(x) = (x−ξ2)+,

where (·)+ denotes the positive portion of its argument:

r+ =
{

r if r ≥ 0
0 if r < 0

• Note that the degrees of freedom add up: 3 regions × 2
df/region - 2 constraints = 4 basis functions

• This is an example of what is called the truncated power
basis; it can be extended to any order of polynomials
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Quadratic splines
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Cubic splines
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Natural cubic splines

• Polynomial fits tend to be erratic at the boundaries of the
data; naturally, cubic splines share the same flaw

• Natural cubic splines ameliorate this problem by adding the
additional (4) constraints that the function is linear beyond
the boundaries of the data
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Natural cubic splines (cont’d)
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Natural cubic splines, 6 df
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Natural cubic splines, 6 df (cont’d)
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Additive models

• When we have multiple features, a natural extension of basis
functions is to assume an additive relationship:

f(x) =
p∑

j=1

M∑
m=1

βmjhmj(xj);

such models are called additive models or generalized additive
models (GAMs)

• If the number of coefficients is large, we will not wish to use
maximum likelihood to estimate them, as we have seen
several times in the course

• Furthermore, it is often the case that many potentially useful
features are present, but we expect most of them to be
unrelated to the outcome
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Connection with group lasso

• However, it makes little sense in this scenario to carry out
selection at the level of the individual basis functions; we want
to select features, and if a feature is selected, we want all of
its basis functions in the model

• Representing the problem as a group lasso model, we have

Q(β|H, y) = 1
2n

∥y − Hβ∥2
2 +

∑
j

λj∥βj∥2,

where H is the expanded design matrix with elements
hmj(xij)

• This idea was originally proposed by Ravikumar et al. (2009),
who named it sparse additive models (SPAM)
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Illustration: Rat eye data

• To illustrate how sparse additive models work, let us apply one
to the rat eye data; for the sake of simplicity, I’ll restrict the
analysis to the 857 genes on chromosome 5

• For the sake of illustration, we’ll compare the group lasso fit
with a group MCP fit (penalty="grMCP")
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Results: Group Lasso
The group lasso model selects 33 genes, achieving an R2 of 0.71:
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Results: Group MCP
The group MCP model selects just 12 genes, with R2 = 0.62:
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PNISR
The first gene to enter the model is PNISR; the PNI stands
forPNN-interacting, where PNN is a gene that plays a critical role
in proper eye development
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Introduction

• Our second topic for today is the application of penalized
regression methods to principal components analysis

• The key idea behind principal components analysis is to
reduce the dimension of X while accounting for as much of
the information in X as possible

• This aim is achieved by transforming to a new set of variables
(the principal components) that are linear combinations of the
original variables

• The new set of variables have lower dimension and are
uncorrelated, both of which can greatly simplify the analysis
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Principal components in terms of SVD components

• Suppose that we have standardized X, and let X = UDV⊤

be the singular value decomposition of X
• By convention, the singular values {dj} and their associated

vectors {uj} and {vj} are ordered, so that d1 ≥ d2 ≥ · · · ≥ dp

• Now, the variables djuj are called the principal components of
the original data X, for reasons that we will now describe
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Properties of principal components

• First, note that the principal components are linear
combinations of the original variables:

Xvj = djuj

• Furthermore, ∥d1u1∥2 ≥ ∥d2u2∥2 ≥ · · · ≥ ∥dpup∥2

• Indeed, out of all possible vectors z that can be formed from a
normalized linear combination of the original explanatory
variables (i.e., such that z = Xa where a⊤a = 1), the variable
with the largest variance is d1u1

• Out of all possible normalized linear combinations z, the one
that has the largest variance and is orthogonal to the first
combination (i.e., such that z⊤u1 = 0) is d2u2, and so on
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More terminology

To summarize,
• The vectors vj (the columns of V) are the principal

component directions, or loadings, and they describe the
transformation process by which the new variables are created
out of the old

• The vectors uj (the columns of U) are the normalized
principal components (sometimes called the principal
component scores)

• The singular values dj are used to rank the principal
components in term of importance
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Illustration
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Sparse principal components

• One downside of principal components is that they can be
difficult to interpret: the new variables are linear combinations
of the old ones, and if p is large, the linear combination will
be complex

• On a related note, suppose an investigator wanted to be able
to measure a small number of features, but retain as much of
the information in X as possible

• In both situations, the fact that the principal components are
composed of all the original features poses a problem; an
appealing extension would be components that are sparse with
respect to the original features
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Principal components as a regression problem

• It turns out that principal components can be written as a
regression problem, where the loadings can be found by
minimizing

∥X − UDV⊤∥2
F = ∥X − XVV⊤∥2

F

such that V⊤V = I, where ∥A∥F is the Frobenius norm
defined previously (∥A∥2

F = sum of squares of all elements)
• In a clever paper, Zou et al. (2006) showed that we can also

find the loadings by minimizing

∥X − XBA⊤∥2
F such that A⊤A = I

with respect to both A and B, where vj = bj/∥bj∥2
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Introducing sparsity

• The advantage of this formulation is that it is straightforward
to solve for A and B separately, treating the other as fixed

• In particular, treating A as fixed, solving for bj is equivalent
to minimizing

∥Xaj + Xbj∥2
2,

which is simply least squares regression with ỹ = Xaj

• A natural sparse extension, then, is to add an L1 penalty: find
bj by minimizing

∥ỹ − Xbj∥2
2 + λ∥bj∥1
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Sparse PCA

• The approach proposed by Zou et al., then, was to solve for
sparse principal components by minimizing

∥X − XBA⊤∥2
F +

∑
j

λj∥bj∥1 + λ0
∑

j

∥bj∥2
2

such that A⊤A = I, where the extra ridge (elastic net)
penalty is introduced to guarantee unique solutions

• As discussed on the previous slide, the problem can be solved
by alternating updates for A and B:

◦ Updating B is equivalent to solving k elastic net problems,
where k is the desired number of components

◦ We’re skipping the details for the update of A, but it amounts
to computing the SVD of X⊤XB
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Choice of penalties

• The choice of λ0 is not particularly important; it is typically
just set to some arbitrary small positive value

• The selection of the λj parameters is more complex
• One could try out several values of {λj} and attempt to make

selections on the basis of the proportion of explained variance
in X

• Alternatively, a convenient thing to do in practice is simply to
set λj at a value such that exactly, say, 3 terms appear in
each principal component
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WHO-ARI pneumonia data

• As an example of how this works in practice, let’s apply the
sparse PCA method to our WHO-ARI data set

• This is the kind of data set for which principal components
are particularly attractive, as several features measure
essentially the same thing; for example, it is not particularly
meaningful to isolate the effect of changes in feeding ability
while keeping sucking ability constant

• Still, ordinary principal components are difficult to interpret
here, as they are linear combinations of all 67 variables
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R code

• The sparse PCA approach described here is implemented in
the R package sparsepca

• As with regular PCA, it is typically preferable to apply sparse
PCA to the standardized design matrix (scale=TRUE, which is
not the default):

fit <- spca(X, k = 5, 0.1, scale = TRUE) # or use std(X)
V <- fit$loadings
Z <- X %*% V # Principal components

• Here, k is the desired number of components and λ = 0.1; the
package unfortunately does not solve the entire path
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Results: Components

The first five sparse principal components are
• PC1, “Energy”: Attentive, eating, not drowsy, quality of

crying, amount of movement
• PC2, “Respiratory problems”: Respiratory distress, lower chest

in-drawing, nasal flaring
• PC3, “Hydration”: Skin turgor, dehydrated, sunken fontanelle
• PC4, “Size”: Weight, length, head circumference
• PC5, “Agitation”: Sleeping less, crying more
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Results: Predictive of pneumonia?

Regressing pneumonia score on the principal components (XV):

β

< 0.0001

< 0.0001

   0.16

< 0.0001

   0.24
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So energy and respiratory problems clearly increase the likelihood
of pneumonia, while size decreases it; it is not clear that hydration
and agitation are useful in predicting pneumonia
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Introduction

• As a final topic in this course, we will briefly discuss how
penalization can be used to estimate network structure in
probabilistic graphical models

• This is a big topic that we’re only going to scratch the surface
of; the main thing we will focus on is that graphs encode
conditional independence relationships between variables

• Specifically, if a set of vertices S separates a graph into two
disconnected components A and B, then the variables in A
are independent of the variables in B conditional on the
variables in S
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For example, the
conditional independence
statement

X1:3 ⊥⊥ X6:7|X4:5

implies (and is implied by)
the graph
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Gaussian graphical models

• For continuous variables, a particularly convenient type of
graphical model is to assume the multivariate normal
distribution X ∼ N(µ, Σ); this is known as the Gaussian
graphical model

• For Gaussian graphical models, it is typically more convenient
to work in terms of the precision matrix Θ = Σ−1

• One particularly relevant property of Θ is that θij = 0 implies
that there is no edge connecting nodes i and j in the graph
depicting the conditional independence relationships
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• It can be shown that for a Gaussian graphical model, up to a
constant, the loss (−1/n times the log-likelihood) is

L(Θ|X) = tr(SΘ) − log |Θ| ,

where S = 1
n

∑
i xix⊤

i is the sample covariance matrix
• As you might expect, the maximum likelihood estimator is

unstable and inaccurate when p is large relative to n

• Furthermore, even when p is small, the MLE will not produce
exact zeros for Θ (no help for estimating the graph)

• Thus, let us consider the penalized loss:

L(Θ|X) = tr(SΘ) − log |Θ| + λ
∑
j ̸=k

|θjk|
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• The matrix of penalized score equations is then

S − Θ−1 + λΨ ∋ 0,

where Ψij = ∂ |θij |
• Partitioning this equation yields

−s−j + Σ−j,−jβ + λ∂∥β∥1 ∋ 0,

where β = −θ−j/θj,j

• Thus, we can estimate Θ by repeatedly solving a slightly
modified version of the lasso, in which we essentially
iteratively regress each variable on all the others; this
algorithm is known as the graphical lasso
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Example: Protein phosphorylation network
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