Debiasing and subsampling/resampling approaches

Patrick Breheny

April 8, 2025

Introduction

- Today's notes will discuss two unrelated approaches to inference:
 - Debiasing, in which we attempt to get around the fact that $\hat{\beta}_j$ is biased by constructing a new statistic $\tilde{\beta}_j$ that is unbiased for β_j
 - Perturbation approaches that use subsampling, resampling, or sample splitting as ways to carry out inference for high-dimensional models
- Both of these are really categories of approaches rather than a specific approach; many ideas have been proposed that fall into each category

Debiasing

- The basic idea behind debiasing is that frequentist inference tends to work well if $\hat{\beta}_j \sim N(\beta_j, SE^2)$
- Penalized regression estimates obviously do not have this property (with the possible exception of MCP/SCAD), so debiasing approaches construct a new estimate

$$\tilde{\beta}_j = \hat{\beta}_j + \mathrm{adj},$$

for which approximate unbiased normality holds

- Zhang and Zhang (2014)
- van de Geer et al. (2014)
- Javanmard and Montanari (2014)

Implementation

• The adjustment typically takes the form

$$\widetilde{\boldsymbol{eta}} = \widehat{\boldsymbol{eta}} + \hat{\boldsymbol{\Theta}} rac{1}{n} \mathbf{X}^{ op} \mathbf{r},$$

where $\hat{\boldsymbol{\Theta}}$ is an estimate of the inverse of $\mathbf{X}^{\scriptscriptstyle \top}\mathbf{X}/n$

- This is easy to understand in the orthogonal case, where $\Theta = I$ and $\widetilde{\beta}$ is simply the OLS estimate
- In high dimensions, however, it is not trivial to estimate ⊖ and typically involves fitting a new model (e.g., a lasso model) for each feature (treating it as the outcome)

Semi-penalization

- For the sake of this class, let's look at a relatively simpler way to accomplish debiasing: *semi-penalization*
- The idea here is that we can obtain a (more or less) unbiased estimate for β_j by not penalizing it; for example,

$$L(\boldsymbol{\beta}|\mathbf{X}, \mathbf{y}) + \lambda \sum_{k \neq j} |\beta_k|$$

 As far as I know, this idea first appeared in Huang et al. (2013, "SPIDR"); today I'll talk about an approach proposed in Shi et al. (2019), which is very similar in concept but differs in the details

Semi-penalized LRT

- The idea here is actually very similar to the general statistical idea of a likelihood ratio test: we fit constrained and unconstrained models, and then compare their likelihoods
- Specifically, for testing $H_0: \beta_j = 0$, we would solve for $\hat{\beta}_0$ that minimizes

$$L(\boldsymbol{\beta}_{-j}|\mathbf{X}_{-j},\mathbf{y}) + \lambda \sum_{k \neq j} |\beta_k|$$

as well as $\widehat{oldsymbol{eta}}_a$ that minimizes

$$L(\boldsymbol{\beta}|\mathbf{X}, \mathbf{y}) + \lambda \sum_{k \neq j} |\beta_k|$$

Distribution

• It can be shown that (with a number of assumptions), the test statistic

$$2\{\ell(\widehat{\boldsymbol{\beta}}_{a},\widehat{\sigma}^{2})-\ell(\widehat{\boldsymbol{\beta}}_{0},\widehat{\sigma}^{2})\}$$

follows an approximate χ^2 distribution with 1 degree of freedom, where $\ell(\pmb{\beta},\sigma^2)$ denotes the log-likelihood

- The error variance can be estimated using any of the methods we have discussed in class, but as in the classical LRT, is based on the unrestricted (alternative) model
- The paper discusses score and Wald tests as well, but we'll only look at the LRT

Remarks

- One of the conditions required to show convergence to the proper distribution is that $\sqrt{n}p'(\beta_i^*) \to 0$ for all $j \in S$
- This is satisfied for MCP/SCAD, but not the lasso; nevertheless, it seems to me to work reasonably well for the lasso also, so I will go ahead and show those results
- This approach would also seem amenable to constructing confidence intervals, although the article doesn't discuss this
- Another issue is that it would seem reasonable to apply a multiple comparison procedure to the *p*-values, but this is not discussed in the article, so I'll just present the unadjusted *p*-values

Results: Example data set (10 largest coefficients)

Feature	Estimate	mfdr	SPLRT
A1	0.87	< 0.0001	< 0.0001
A2	-0.77	< 0.0001	< 0.0001
A4	-0.50	< 0.0001	< 0.001
A3	0.42	< 0.0001	< 0.001
A6	-0.35	< 0.001	0.01
A5	0.31	< 0.01	0.54
N39	-0.20	0.33	0.03
N25	0.17	0.48	0.07
N22	0.13	0.78	0.17
B9	0.13	0.75	0.03

Comments

- Results seem more or less similar for the noise variables and most of the "A" variables
- However, B9 and A5 illustrate the key difference:
 - We have convincing evidence that one of them is important according to the marginal approach, which isn't concerned about the possibility of indirect associations
 - This is a major concern for conditional approaches, however neither variable shows up as significant in the semi-penalized LRT

High-dimensional example: TCGA

- Like several conditional approaches, the semi-penalized LRT works nicely in many low- to medium-dimensional situations, but dramatically loses power in high-dimensional data
- For example, in applying the test to our TCGA data, no genes could be identified as significant: the minimum *p*-value was 0.14 even without any adjustments for multiple comparisons
- In contrast, 95 features are selected via cross-validation, and 16 of those have a local mfdr under 10%

Sample splitting Multiple splits

Sample splitting: Idea

- The rest of today's lecture will focus on using subsampling, resampling, and sample splitting as ways to carry out inference for high-dimensional models
- We begin with the simplest idea: sample splitting

Sample splitting Multiple splits

Sample splitting: Idea (cont'd)

Sample splitting involves two basic steps:

- Take half of the data and fit a penalized regression model (e.g., the lasso); typically this involves cross-validation as well for the purposes of selecting λ
- Use the remaining half to fit an ordinary least squares model using only the variables that were selected in step (1)

Sample splitting: Example (step 1)

- Let's split the example data set into two halves, D_1 and $D_2,$ each with n=50 observations
- Fitting a lasso model to D_1 (n = 50, p = 60) and using cross-validation to select λ , we select 16 variables:
 - 6 from category A
 - 1 from category B
 - 9 from category N

Sample splitting: Example (step 2)

- Fitting an ordinary linear regression model to the selected variables (n = 50, p = 16):
 - $\circ~$ 5 "A" features are significant in the p < 0.05 sense
 - 0 "B" features were significant
 - 0 "N" features were significant
- We can obtain confidence intervals as well, although note that we only obtain confidence intervals for coefficients selected in step (1)

Sample splitting Multiple splits

Sample splitting: Advantages and disadvantages

- The main advantage of the sample splitting approach is that it is clearly valid: all inference is derived from classical linear model theory
- The main disadvantages are:
 - Lack of power due to splitting the sample size in half
 - Potential increase in type I error if important variables are missed in the first stage
 - Results can vary considerably depending on the split chosen

Sample splitting Multiple splits

Multiple splits

- An obvious remedy for this final disadvantage is to apply the sample splitting procedure many times and average over the splits
- To some extent, this will also help with the problem of failing to select important variables in stage (1)
- One major challenge with this approach, however, is how exactly we average over results in which a covariate was not included in the model

Sample splitting Multiple splits

Averaging over unselected variables

- One conservative remedy is to simply assign $p_j=1$ whenever $j\notin \mathcal{S},$ the set of selected variables from stage 1
- With this substitution in place, we will have, for each variable, a vector of *p*-values $p_j^{(1)}, \ldots, p_j^{(B)}$, where *B* is the number of random splits, which we can aggregate in a variety of ways
- For the results that follow, I used the median

Sample splitting Multiple splits

Multiple split approach applied to example data

As with the semi-penalized LRT, 5 "A" variables are significant

Sample splitting Multiple splits

Remarks

- Certainly, the results are much more stable if we average across sample splits
- The other downside, however, (loss of power from splitting the sample in two) cannot be avoided
- It is possible to extend this idea to obtain confidence intervals as well by inverting the hypothesis tests, although the implementation gets somewhat complicated

Sample splitting Multiple splits

TCGA data

- To get a feel for how conservative this approach is, let's apply it to the TCGA data (n = 536, p = 17, 322)
- Using the multiple-splitting approach, only a single variable is significant with $p<0.05\,$
- This is similar to the semi-penalized LRT, but again in sharp contrast to the marginal results

Stability selection Bootstrapping

Stability selection

- One could argue that trying to obtain a classical *p*-value isn't really the right goal, that what makes sense for single hypothesis testing isn't relevant to high-dimensional modeling
- Consider, then, the idea of *stability selection* (Meinshausen & Bühlmann, 2010), in which we decide that a variable is significant if it is selected in a high proportion of penalized regression models that have been applied to "perturbed" data
- The most familiar way of perturbing a data set is via resampling (i.e., bootstrapping), although the authors also considered other ideas

Stability selection Bootstrapping

Details

- Furthermore, there are a variety of ways of carrying out bootstrapping, a point we will return to later
- For simplicity, I'll stick to what the authors chose in their original paper: randomly select n/2 indices from $\{1, \ldots, n\}$ without replacement (this is known as "subagging" and based on an argument that sampling n/2 without replacement is fairly similar to resampling n with replacement)
- Letting π_{thr} denote a specified cutoff and $\hat{\pi}_j(\lambda)$ the fraction of times variable j is selected for a given value of λ , the set of *stable variables* is defined as

$$\{j: \hat{\pi}_j(\lambda) > \pi_{\mathsf{thr}}\}\$$

Stability selection Bootstrapping

Stability selection for example data

Variables with $\beta_j \neq 0$ in red:

Stability selection Bootstrapping

Stability selection for TCGA data

13 variables exceed $\pi_{\text{thr}} = 0.6$ for any λ (in red)

Stability selection Bootstrapping

FDR bound

• Meinshausen & Bühlmann also provide an upper bound for the expected number of false selections in the stable set (i.e., variables with $\beta_j = 0$ and $\hat{\pi}_j(\lambda) > \pi_{\text{thr}}$):

$$\frac{1}{2\pi_{\mathsf{thr}} - 1} \frac{S(\lambda)^2}{p},$$

where $S(\lambda)$ is the expected number of selected variables

- Note that this bound can only be applied if $\pi_{\rm thr} > 0.5$
- In practice, however, this bound is rather conservative:
 - $\circ~$ For the example data set, only the two variables with $\beta_j=1$ can be selected at an FDR of 10%
 - For the TCGA data set, only two variables can be stably selected

Stability selection Bootstrapping

Bootstrapping

- Stability selection is essentially just bootstrapping, with a special emphasis on whether $\widehat{\beta}_i^{(b)}=0$
- There are a variety of ways of carrying out bootstrapping for regression models; the one we have just seen, in which one selects random elements from $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, is known as the *pairs bootstrap* or *pairwise bootstrap*
- Alternative methods, such as bootstrapping the residuals, are somewhat less robust in the presence of model uncertainty, as they depend on the selection of an initial model

Stability selection Bootstrapping

Bootstrap intervals: Example data

Bootstrap percentile intervals for the six coefficients with $\beta_j \neq 0$, residual approach, λ fixed at $\hat{\lambda}_{CV}$

Stability selection Bootstrapping

Does bootstrapping work?

- This is interesting, but a natural question would be whether or not bootstrapping actually works in this setting
- In particular, we have theoretical results establishing that bootstrapping works for maximum likelihood; do those proofs extend to penalized likelihood settings?
- The answer is "no", or at least, not in the classical sense

Stability selection Bootstrapping

Limitations/failures of bootstrapping

There are two fundamental issues with the bootstrap

- One is caused by the sparsity of the lasso solutions; if $\hat{\beta}_j = 0$ in most bootstrap samples, the resulting (0, 0) quantile interval is clearly problematic
- The other is caused by the systematic shrinkage of the lasso estimates; it can be shown that even asymptotically, this never goes away for the lasso (although it does for MCP and SCAD)

Stability selection Bootstrapping

Bootstrap intervals for MCP

Stability selection Bootstrapping

Figure from Harris & Breheny (2025)

Once the sparse draw problem is corrected, however, bootstrap intervals do have correct average coverage:

