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Introduction

• Today’s notes will discuss two unrelated approaches to
inference:

◦ Debiasing, in which we attempt to get around the fact that β̂j

is biased by constructing a new statistic β̃j that is unbiased for
βj

◦ Perturbation approaches that use subsampling, resampling, or
sample splitting as ways to carry out inference for
high-dimensional models

• Both of these are really categories of approaches rather than a
specific approach; many ideas have been proposed that fall
into each category
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Debiasing

• The basic idea behind debiasing is that frequentist inference
tends to work well if β̂j

.∼ N(βj , SE2)
• Penalized regression estimates obviously do not have this

property (with the possible exception of MCP/SCAD), so
debiasing approaches construct a new estimate

β̃j = β̂j + adj,

for which approximate unbiased normality holds
◦ Zhang and Zhang (2014)
◦ van de Geer et al. (2014)
◦ Javanmard and Montanari (2014)
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Implementation

• The adjustment typically takes the form

β̃ = β̂ + Θ̂ 1
nX⊤r,

where Θ̂ is an estimate of the inverse of X⊤X/n

• This is easy to understand in the orthogonal case, where
Θ = I and β̃ is simply the OLS estimate

• In high dimensions, however, it is not trivial to estimate Θ
and typically involves fitting a new model (e.g., a lasso model)
for each feature (treating it as the outcome)
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Semi-penalization

• For the sake of this class, let’s look at a relatively simpler way
to accomplish debiasing: semi-penalization

• The idea here is that we can obtain a (more or less) unbiased
estimate for βj by not penalizing it; for example,

L(β|X, y) + λ
∑
k ̸=j

|βk|

• As far as I know, this idea first appeared in Huang et
al. (2013, “SPIDR”); today I’ll talk about an approach
proposed in Shi et al. (2019), which is very similar in concept
but differs in the details
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Semi-penalized LRT

• The idea here is actually very similar to the general statistical
idea of a likelihood ratio test: we fit constrained and
unconstrained models, and then compare their likelihoods

• Specifically, for testing H0 : βj = 0, we would solve for β̂0
that minimizes

L(β−j |X−j , y) + λ
∑
k ̸=j

|βk|

as well as β̂a that minimizes

L(β|X, y) + λ
∑
k ̸=j

|βk|
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Distribution

• It can be shown that (with a number of assumptions), the
test statistic

2{ℓ(β̂a, σ̂2) − ℓ(β̂0, σ̂2)}

follows an approximate χ2 distribution with 1 degree of
freedom, where ℓ(β, σ2) denotes the log-likelihood

• The error variance can be estimated using any of the methods
we have discussed in class, but as in the classical LRT, is
based on the unrestricted (alternative) model

• The paper discusses score and Wald tests as well, but we’ll
only look at the LRT
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Remarks

• One of the conditions required to show convergence to the
proper distribution is that

√
np′(β∗

j ) → 0 for all j ∈ S
• This is satisfied for MCP/SCAD, but not the lasso;

nevertheless, it seems to me to work reasonably well for the
lasso also, so I will go ahead and show those results

• This approach would also seem amenable to constructing
confidence intervals, although the article doesn’t discuss this

• Another issue is that it would seem reasonable to apply a
multiple comparison procedure to the p-values, but this is not
discussed in the article, so I’ll just present the unadjusted
p-values
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Results: Example data set (10 largest coefficients)

Feature Estimate mfdr SPLRT

A1 0.87 < 0.0001 < 0.0001
A2 -0.77 < 0.0001 < 0.0001
A4 -0.50 < 0.0001 < 0.001
A3 0.42 < 0.0001 < 0.001
A6 -0.35 < 0.001 0.01

A5 0.31 < 0.01 0.54
N39 -0.20 0.33 0.03
N25 0.17 0.48 0.07
N22 0.13 0.78 0.17
B9 0.13 0.75 0.03
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Comments

• Results seem more or less similar for the noise variables and
most of the “A” variables

• However, B9 and A5 illustrate the key difference:
◦ We have convincing evidence that one of them is important

according to the marginal approach, which isn’t concerned
about the possibility of indirect associations

◦ This is a major concern for conditional approaches, however –
neither variable shows up as significant in the semi-penalized
LRT
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High-dimensional example: TCGA

• Like several conditional approaches, the semi-penalized LRT
works nicely in many low- to medium-dimensional situations,
but dramatically loses power in high-dimensional data

• For example, in applying the test to our TCGA data, no genes
could be identified as significant: the minimum p-value was
0.14 even without any adjustments for multiple comparisons

• In contrast, 95 features are selected via cross-validation, and
16 of those have a local mfdr under 10%
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Sample splitting: Idea

• The rest of today’s lecture will focus on using subsampling,
resampling, and sample splitting as ways to carry out
inference for high-dimensional models

• We begin with the simplest idea: sample splitting
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Sample splitting: Idea (cont’d)

Sample splitting involves two basic steps:
• Take half of the data and fit a penalized regression model

(e.g., the lasso); typically this involves cross-validation as well
for the purposes of selecting λ

• Use the remaining half to fit an ordinary least squares model
using only the variables that were selected in step (1)
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Sample splitting: Example (step 1)

• Let’s split the example data set into two halves, D1 and D2,
each with n = 50 observations

• Fitting a lasso model to D1 (n = 50, p = 60) and using
cross-validation to select λ, we select 16 variables:

◦ 6 from category A
◦ 1 from category B
◦ 9 from category N
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Sample splitting: Example (step 2)

• Fitting an ordinary linear regression model to the selected
variables (n = 50, p = 16):

◦ 5 “A” features are significant in the p < 0.05 sense
◦ 0 “B” features were significant
◦ 0 “N” features were significant

• We can obtain confidence intervals as well, although note that
we only obtain confidence intervals for coefficients selected in
step (1)
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Sample splitting: Advantages and disadvantages

• The main advantage of the sample splitting approach is that
it is clearly valid: all inference is derived from classical linear
model theory

• The main disadvantages are:
◦ Lack of power due to splitting the sample size in half
◦ Potential increase in type I error if important variables are

missed in the first stage
◦ Results can vary considerably depending on the split chosen
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Multiple splits

• An obvious remedy for this final disadvantage is to apply the
sample splitting procedure many times and average over the
splits

• To some extent, this will also help with the problem of failing
to select important variables in stage (1)

• One major challenge with this approach, however, is how
exactly we average over results in which a covariate was not
included in the model
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Averaging over unselected variables

• One conservative remedy is to simply assign pj = 1 whenever
j /∈ S, the set of selected variables from stage 1

• With this substitution in place, we will have, for each variable,
a vector of p-values p

(1)
j , . . . , p

(B)
j , where B is the number of

random splits, which we can aggregate in a variety of ways
• For the results that follow, I used the median
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Multiple split approach applied to example data

A B N
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As with the semi-penalized LRT, 5 “A” variables are significant
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Remarks

• Certainly, the results are much more stable if we average
across sample splits

• The other downside, however, (loss of power from splitting
the sample in two) cannot be avoided

• It is possible to extend this idea to obtain confidence intervals
as well by inverting the hypothesis tests, although the
implementation gets somewhat complicated
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TCGA data

• To get a feel for how conservative this approach is, let’s apply
it to the TCGA data (n = 536, p = 17, 322)

• Using the multiple-splitting approach, only a single variable is
significant with p < 0.05

• This is similar to the semi-penalized LRT, but again in sharp
contrast to the marginal results
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Stability selection

• One could argue that trying to obtain a classical p-value isn’t
really the right goal, that what makes sense for single
hypothesis testing isn’t relevant to high-dimensional modeling

• Consider, then, the idea of stability selection (Meinshausen &
Bühlmann, 2010), in which we decide that a variable is
significant if it is selected in a high proportion of penalized
regression models that have been applied to “perturbed” data

• The most familiar way of perturbing a data set is via
resampling (i.e., bootstrapping), although the authors also
considered other ideas
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Details

• Furthermore, there are a variety of ways of carrying out
bootstrapping, a point we will return to later

• For simplicity, I’ll stick to what the authors chose in their
original paper: randomly select n/2 indices from {1, . . . , n}
without replacement (this is known as “subagging” and based
on an argument that sampling n/2 without replacement is
fairly similar to resampling n with replacement)

• Letting πthr denote a specified cutoff and π̂j(λ) the fraction of
times variable j is selected for a given value of λ, the set of
stable variables is defined as

{j : π̂j(λ) > πthr}
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Stability selection for example data
Variables with βj ̸= 0 in red:
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Stability selection for TCGA data
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13 variables exceed πthr = 0.6 for any λ (in red)
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FDR bound

• Meinshausen & Bühlmann also provide an upper bound for
the expected number of false selections in the stable set (i.e.,
variables with βj = 0 and π̂j(λ) > πthr):

1
2πthr − 1

S(λ)2

p
,

where S(λ) is the expected number of selected variables
• Note that this bound can only be applied if πthr > 0.5
• In practice, however, this bound is rather conservative:

◦ For the example data set, only the two variables with βj = 1
can be selected at an FDR of 10%

◦ For the TCGA data set, only two variables can be stably
selected

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 26 / 32



Debiasing
Subsampling
Resampling

Stability selection
Bootstrapping

Bootstrapping

• Stability selection is essentially just bootstrapping, with a
special emphasis on whether β̂

(b)
j = 0

• There are a variety of ways of carrying out bootstrapping for
regression models; the one we have just seen, in which one
selects random elements from {(xi, yi)}n

i=1, is known as the
pairs bootstrap or pairwise bootstrap

• Alternative methods, such as bootstrapping the residuals, are
somewhat less robust in the presence of model uncertainty, as
they depend on the selection of an initial model
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Bootstrap intervals: Example data

Bootstrap percentile intervals for the six coefficients with βj ̸= 0,
residual approach, λ fixed at λ̂CV

β
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Does bootstrapping work?

• This is interesting, but a natural question would be whether or
not bootstrapping actually works in this setting

• In particular, we have theoretical results establishing that
bootstrapping works for maximum likelihood; do those proofs
extend to penalized likelihood settings?

• The answer is “no”, or at least, not in the classical sense
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Limitations/failures of bootstrapping

There are two fundamental issues with the bootstrap
• One is caused by the sparsity of the lasso solutions; if β̂j = 0

in most bootstrap samples, the resulting (0, 0) quantile
interval is clearly problematic

• The other is caused by the systematic shrinkage of the lasso
estimates; it can be shown that even asymptotically, this never
goes away for the lasso (although it does for MCP and SCAD)
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Bootstrap intervals for MCP

β
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Figure from Harris & Breheny (2025)
Once the sparse draw problem is corrected, however, bootstrap
intervals do have correct average coverage:
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