Marginal false discovery rates

Patrick Breheny

April 3, 2025

Where we're at and where we're going

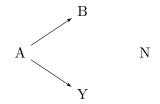
- At this point, we've covered the most widely used approaches to fitting penalized regression models in the standard setting
- The remainder of the course will focus on:
 - Inference for $oldsymbol{eta}$
 - Other models, such as logistic regression and Cox regression
 - Other covariate structures, such as grouping and fusion
- We'll begin with inference

Inferential questions

- Up until this point, our inference has been restricted to the predictive ability of the model (which we can obtain via cross-validation)
- This is useful, of course, but we would also like to be able to ask the questions:
 - How reliable are the selections made by the model? What is its false discovery rate?
 - How accurate are the estimates yielded by the model? Can we obtain confidence intervals for β ? Even for β_j not selected by the model?

- As I've remarked previously, little progress was made on these questions until relatively recently, and the field is still very much unsettled as far as a consensus on how to proceed with inference
- Broadly speaking, I would classify the proposed approaches into five major categories:
 - Marginal approaches
 - Debiasing
 - Sample splitting/resampling
 - Selective inference
 - Synthetic variable approaches (knockoff filter, Gaussian mirror)

- For all of these methods, we will describe the idea behind how they work and then analyze the same set of simulated data for the sake of comparison
- Simulation setup:



• The hdrm package has a function called gen_data_abn() to simulate data of this type

Example data

Our example data set for the next several lectures:

•
$$n = 100, p = 60, \sigma^2 = 1$$

- Six variables with $\beta_j \neq 0$ (category "A"):
 - Two variables with $\beta_j = \pm 1$:
 - Four variables with $\beta_j = \pm 0.5$:
- Each of the six variables with $\beta_j \neq 0$ is correlated ($\rho = 0.5$) with two other variables; i.e., there are 12 "Type B" features
- The remaining 42 variables are pure noise, $\beta_j = 0$ and independent of all other variables ("Type N")

 $gen_data_abn(n = 100, p = 60, a = 6, b = 2, rho = 0.5, beta = c(1, -1, 0.5, -0.5, 0.5, -0.5))$

Motivation Performance Case studies

KKT conditions

• Recall the KKT conditions for the lasso:

$$\frac{1}{n} \mathbf{x}_j^{\mathsf{T}} \mathbf{r} = \lambda \operatorname{sign}(\widehat{\beta}_j) \qquad \text{for all } \widehat{\beta}_j \neq 0$$
$$\frac{1}{n} \left| \mathbf{x}_j^{\mathsf{T}} \mathbf{r} \right| \le \lambda \qquad \text{for all } \widehat{\beta}_j = 0$$

• Letting $\mathbf{r}_j = \mathbf{y} - \mathbf{X}_{-j} \hat{\boldsymbol{\beta}}_{-j}$ denote the partial residual with respect to feature j, this implies that

$$\frac{1}{n} \left| \mathbf{x}_{j}^{\top} \mathbf{r}_{j} \right| > \lambda \quad \text{for all } \widehat{\beta}_{j} \neq 0$$
$$\frac{1}{n} \left| \mathbf{x}_{j}^{\top} \mathbf{r}_{j} \right| \leq \lambda \quad \text{for all } \widehat{\beta}_{j} = 0;$$

similar equations apply for MCP, SCAD, elastic net, etc.

Motivation Performance Case studies

Selection probabilities

• Therefore, the probability that variable j is selected is

$$\mathbb{P}\left(\frac{1}{n}\left|\mathbf{x}_{j}^{\mathsf{T}}\mathbf{r}_{j}\right| > \lambda\right)$$

- This suggests that if we are able to characterize the distribution of $\frac{1}{n}\mathbf{x}_{j}^{\mathsf{T}}\mathbf{r}_{j}$ under the null, we can estimate the number of false selections in the model
- A simple approximation (we'll come back to this shortly) is:

$$\mathbb{E}\left|\hat{\mathcal{S}} \cap \mathcal{N}\right| = 2\left|\mathcal{N}\right| \Phi(-\lambda\sqrt{n}/\sigma),$$

where \hat{S} is the set of selected variables and N is the set of "N" variables (note that N differs here from other lectures)

Motivation Performance Case studies

Estimation

- To use this as an estimate, two unknown quantities must be estimated (this should seem familiar):
 - $\circ~|\mathcal{N}|$ can be replaced by p, using the total number of variables as an upper bound for the null variables
 - $\circ~\sigma^2$ can be estimated by $\mathbf{r}^{\scriptscriptstyle \top}\mathbf{r}/(n-|\hat{\mathcal{S}}|)$
- This implies the following estimate for the expected number of false discoveries:

$$\widehat{\mathrm{FD}} = 2p\Phi(-\sqrt{n}\lambda/\hat{\sigma})$$

and this to estimate of the false discovery rate:

$$\widehat{\mathrm{FDR}} = \frac{\widehat{\mathrm{FD}}}{|\hat{\mathcal{S}}|}$$

Motivation Performance Case studies

Local false discovery rates

Letting

$$z_j = \frac{\frac{1}{n} \mathbf{x}_j^{\mathsf{T}} \mathbf{r}_j}{\hat{\sigma} \sqrt{n}},$$

we therefore have $z_j \sim N(0,1)$

- We could therefore use this set of *z*-statistics to estimate feature-specific local false discovery rates as well
- Note that in this approach, we are not restricted to variables in the model; z_j can be calculated for all p features

Motivation Performance Case studies

Remainder term

• Expanding $\mathbf{x}_j^{ op} \mathbf{r}_j / n$, we have

$$\frac{1}{n}\mathbf{x}_{j}^{\mathsf{T}}\mathbf{r}_{j} = \beta_{j}^{*} + \frac{1}{n}\mathbf{x}_{j}^{\mathsf{T}}\varepsilon + \frac{1}{n}\mathbf{x}_{j}^{\mathsf{T}}\mathbf{X}_{-j}(\beta_{-j}^{*} - \hat{\boldsymbol{\beta}}_{-j})$$

- Broadly speaking,
 - For variables like B, this remainder term is not negligible
 - For variables like N, however, this remainder term is negligible

Motivation Performance Case studies

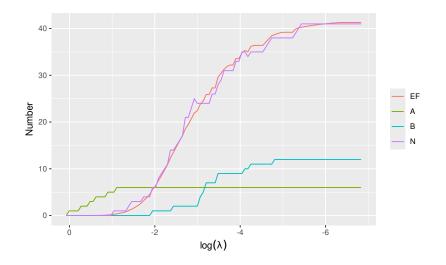
Remarks

Focusing on marginal false discoveries $(X_j \perp \!\!\!\perp Y)$ as opposed to conditional independence $(X_j \perp \!\!\!\perp Y | \{X_k\}_{k \neq j})$ has several advantages:

- Allows straightforward, efficient estimation of the marginal false discovery rate (mFdr)
- Much more powerful: When two variables are correlated, distinguishing between which of them (or none, or both) is driving changes in Y and which is merely correlated with Y is challenging – even more so in high dimensions
- In many applications, discovering variables like B is not problematic

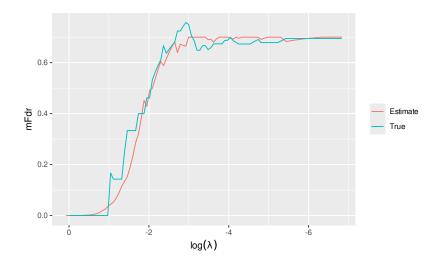
Motivation Performance Case studies

mFdr accuracy



Motivation Performance Case studies

mFdr accuracy (cont'd)

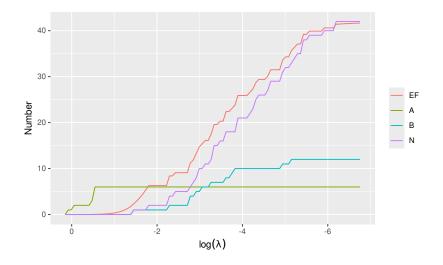


Correlated noise

- The preceding results are something of a "best case scenario" for the proposed method, since the variables in ${\cal N}$ were independent
- When the null variables are dependent, the estimator becomes conservative
- The reason for this is that if features are correlated, regression methods such as the lasso will tend to select a single feature and then become less likely to select other correlated features; our calculations do not account for this phenomenon

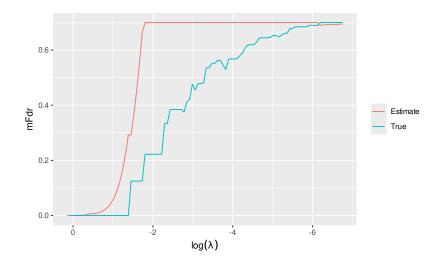
Motivation Performance Case studies

mFdr accuracy, highly correlated noise: $\rho_{jk} = 0.5$



Motivation Performance Case studies

mFdr accuracy, highly correlated noise (cont'd)



Motivation Performance Case studies

Comparison

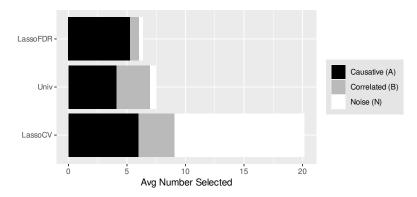
- Being able to estimate mFdr gives us another way of choosing λ : we can choose the smallest value of λ such that $mFdr(\lambda) < \alpha$
- Example data set (uncorrelated noise; nominal FDR = 10%):

	# Selected		
method	А	В	Ν
Lasso (mFDR)	6	0	1
Univariate	4	5	2
Lasso (CV)	6	2	21

Motivation Performance Case studies

Comparison (simulation)

A more extensive comparison based on averaging across many simulated data sets:



Motivation Performance Case studies

Remarks

- Cross-validation gives no control over the number of noise variables selected (and indeed, tends to select a lot of them)
- Univariate approaches give no control over the number of "Type B" variables selected (and also, tend to select a lot of them)
- Using lasso with mFdr control
 - Controls the number of noise variables selected
 - Doesn't necessarily control the number of "Type B" variables selected, but tends not to select many of them (because it's fundamentally a regression-based approach)

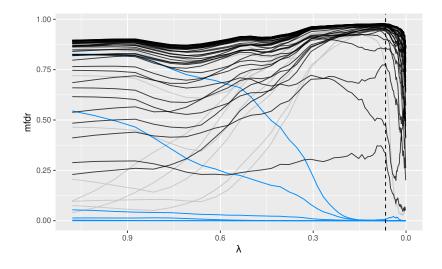
Motivation Performance Case studies

Tension between selection and prediction

- As we saw in our theory lectures, there tends to be a tension between variable selection and prediction, at least for the lasso: values of λ that are optimal for prediction let in too many false positives
- Conversely, if we select λ so as to limit the number of false positives, the resulting model has quite a bit of bias prediction and estimation suffer
- By providing feature-specific inference, local false discovery rates alleviate this tension: we can select the optimal predictive model, but still have a way of quantifying which features are likely to be false discoveries

Motivation Performance Case studies

Local mfdr



Motivation Performance Case studies

summary

<pre>summary(fit, lambda=cvfit\$lambda.min)</pre>								
# E:	20.37							
# A	verage mfdr	: (29 feat	tures) :	0.702				
#								
#	Estimate	Z	mfdr	Selected				
# A1	0.874102	11.2647	< 1e-04	*				
# A2	-0.774583	-10.9076	< 1e-04	*				
# A4	-0.502917	-7.1268	< 1e-04	*				
# A3	0.422238	5.4744	< 1e-04	*				
# A6	-0.351849	-4.7564	0.00059017	*				
# A5	0.309722	4.1233	0.00915535	*				
# N39	-0.200926	-2.9913	0.33482886	*				

Motivation Performance Case studies

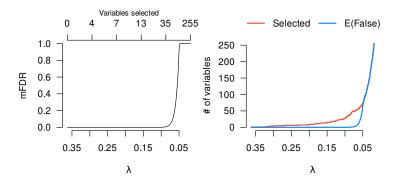
summary (cont'd)

• •	•				
#	N42	0.037062	1.2128	0.95479163	*
#	N26	-0.024974	-1.0778	0.96101303	*
#	N24	-0.020723	-1.0491	0.96213966	*
#	N2	0.018021	0.9914	0.96422830	*
#	N17	-0.009270	-0.8914	0.96733745	*
#	N37	-0.008625	-0.8807	0.96763605	*
#	N11	-0.004770	-0.8405	0.96870108	*
#	N41	-0.004774	-0.8346	0.96885141	*
#	N34	0.003134	0.8183	0.96925552	*

Motivation Performance Case studies

Breast cancer data (n = 536, p = 17, 322)

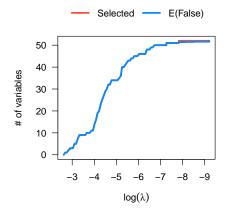
plot(mfdr(fit))
plot(mfdr(fit), type = 'EF')



We can select 16 genes with mfdr < 20%

Motivation Performance Case studies

SOPHIA (n = 292, p = 705, 969)



A GWAS example: No features can be selected with confidence that they are not false discoveries

Patrick Breheny

26 / 27

Motivation Performance Case studies

Conclusions

- Marginal false discovery rates are a useful tool for assessing the reliability of variable selection in penalized regression models
- The simplicity of the estimator makes it (a) available at minimal added computational cost and (b) very easy to generalize to new methods
- Some issues to be aware of, though:
 - Only controls FDR in the marginal sense (i.e., not for all $\beta_j = 0$)
 - Becomes conservative when noise features are highly correlated
- Local false discovery rates provide a way to select prediction-optimal models without worrying about the number of false selections