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Prediction

Introduction

e Last time we derived results from a classical perspective in
which 8* was fixed as n — oo

e Today, we will consider things from a non-asymptotic
perspective, obtaining bounds on estimation and prediction
error while allowing p > n

o Although results along these lines can be shown for other
penalized regression estimators as well, today's lecture will
focus entirely on the lasso
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Prediction

A preliminary lemma

e We'll begin by discussing prediction, as we can prove results
here without requiring any additional conditions

e First, let us prove the following lemma, from which several of
our later results will derive

e Lemma: If A > 2||X"¢l|o, then the lasso prediction error
satisfies

1 2 * * *
SIXB—Xp 15 < All8[l 4+ 2X[18* (1 — 2Al16 + B*|1,

where 6 = 8 — 8*
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Prediction

Prediction bound

e Based on this lemma, we have the following
e Theorem: If A > 2| X"¢l|o, then the lasso prediction error

satisfies 1
~XB = X8|z < 4A[8"

e Corollary: If A =20+/clog(p)/n and y = XB* + € with
g~ N(0, 02), then the lasso prediction error satisfies

clogp

1 2 * *
~IXB = XB"|3 < 80ll8[x

with probability at least 1 — 2exp{(1 — §)logp}
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“High probability”

e Note that if ¢ > 2, then the term inside the exponential will
be negative and resulting probability will be close to 1

e Since the actual value, 1 — 2exp{(1 — §) log p}, isn't really
important, in the remainder of this lecture | will just refer to
this as happening with “high probability”

o Keep in mind, however, that the constant c isn't completely
arbitrary — there is some minimum value it must have in order
to make sure the penalty “tames” the noise
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RENMES

e The prediction error increases with noise and dimension, and
decreases with sample size — these dependencies are intuitive

e The dependence on ||3|| is less obvious; it is worth noting,
however, that up until this point, we have assumed nothing
about B* (or about X)

o This prediction result differs from our previous results:
previously, we had shown that prediction error was O(n™1),
whereas this result is O(n~1/2)
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Convexity conditions
Estimation stimation bound
tion bound revisited

Eigenvalue conditions

e In the previous lecture, we introduced an eigenvalue condition:
namely, that X" X /n — 3, with the minimum eigenvalue of
3’ bounded above 0

e Why is this important?

e Our prediction result shows that we can guarantee
L(B) =~ L(B), however, if the function is flat, we have no
guarantee that 3 is close to B*

e If p > n, however, it is clear that this condition can never be
met
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Estimation

Restricting our eigenvalue conditions

e |n other words, our previous condition was:

157X7X6

> T
10115

for all & # 0 and some 7 > 0

e However, what if this condition didn't have to be met for all
d € RP, but only for some § € RP?

e For example, what if we only had to satisfy the condition for
§ € RS?
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Convexity conditions
Estimation s on bound
n bound revisited

A cone condition

e This is a step in the right direction, but not nearly strong
enough: for example, suppose a variable in A was perfectly
correlated with a variable in &

e We will definitely need to involve N in our condition as well,
but how to do so without running into dimensionality
problems?

e The key here is to require the eigenvalue condition for only
those & vectors that fall mostly, or at least partially, in the
direction of B*

o Theorem: If A > 2| X"¢||s, then

10nrll < 3lldslly
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Estimation

Examples

For example, suppose X "X /n looks like this:

S O =
— = O
— = O

e We are in trouble if S contains either feature 2 or feature 3

e However, if S = {1} then there are no flat directions that lie
within the lasso cones

e Second example: Suppose S = {1} and x; = X2 + X3 + X4;
then L(3) would be perfectly flat in the direction
0= (1,-1,—-1,-1), with ||dxr][1 < 3||ds]|1 satisfied — this
kind of X must be ruled out also
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Convexity conditions
Estimation

[[lustration
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Convexity conditions
Estimation stimation bound
tion bound revisited

Restricted eigenvalue condition

e Let us now formally state the restricted eigenvalue condition,
which | will denote RE(7): There exists a constant 7 > 0 such
that

157X7X6
a3~

for all nonzero & : ||dar]|1 < 3||ds|l

T

e Note: This condition is specific to linear regression; the
general condition is known as restricted strong convexity and
would consist of replacing X" X /n with V2L(83)
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Other conditions

e This is certainly not the only condition that people have used
to prove things in the high-dimensional setting; other similar
conditions include

o lrrepresentable condition

o Restricted isometry property (RIP)
o Compatibility condition

o Coherence condition

o Sparse Riesz condition

o All of these conditions require that Xg is full rank as well as
placing some sort of restriction on how strongly features in &
can be correlated with features in N
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Convexity conditions
Estimation Estimation bound
Prediction bound revisited

Estimation consistency

e With this condition in place, we're ready to prove the
following theorem

o Theorem: Suppose X satisfies RE(7) and A > 2(|XTe||«;

then 3
B—B*2<2\/IS
18- 87112 < 2Als]
e Corollary: Suppose X satisfies RE(7), y = X8* + € with
g; ~ N(0,0?), and X = co+/log(p)/n; then

~ N cio [|S|logp
— < 4=
18- g7l < 47, 12X

with high probability
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Convexity conditions
Estimation Estimation bound
Prediction bound revisited

RENMES

e This rate makes a lot of sense:

o The error of the oracle estimator is on the order o+/|S| /n: no
method can estimate |S| parameters based on n observations

at a better rate than this
o The logp term is the price we pay to search over p features in
order to discover the sparse set S
e Note also the dependence on the eigenvalue parameter 7; in
particular, if the minimum eigenvalue is close to 0, the bound
will be very large (i.e., the estimation error could be very

large)
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Convexity conditions
Estimation Estimation bound
Prediction bound revisited

Another look at prediction error

e Now that we've made some assumptions about X and 8%,
does this affect our prediction accuracy?
e Theorem: Suppose X satisfies RE(7) and A > 2||Xe||o;
then ] 9
~[|XB - X3 < =N*|S]
n T
e Corollary: Suppose X satisfies RE(7), y = X" + & with

g; ~ N(0,02), and X\ = co/log(p)/n; then

IS\ log p

IXB - X7} < -

with high probability
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RENMES

e We have now derived two results concerning the prediction
error of the lasso:
o No assumptions on X or 3*: MSPE = O(n~'/2), the “slow
rate”
o B* sparse, X satisfies RE(7): MSPE = O(n™!), the “fast
rate”
e Further theoretical work has shown that these bounds are in
fact tight: no method can achieve the fast rate without
additional assumptions
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Irrepresentable condition

e Finally, we'll take a look at the selection consistency of the
lasso in high dimensions, although we're not going to have
time to prove our result in class

o We begin by noting that our restricted eigenvalue condition is
not enough to establish selection consistency; we need
something stronger

e The feature matrix X satisfies the irrepresentable condition
(also known as “mutual incoherence™), which | will denote
IR(7), if there exists 7 > 0 such that

max||(X§X3)*1X§xj||1 <l-—r7
JEN
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RENMES

o Note that this places an upper bound on the size of
(XEXs) X Ix;j, the coefficient for regressing a null feature
on the signal features

e In words, this is saying no noise feature can be highly

“represented” by the true signal features; if this were the case,
we might select the noise feature instead of the true signal

e For example, if Xs and X were orthogonal, then 7 =1

e Note that

o This is actually a fairly strong condition
o IR(7) requires X5 = %Xng to be invertible; let £, denote
its minimum eigenvalue
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Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that X satisfies IR(7) and y = X38* + € with
g; ~ N(0,02); let

yo 8o log p

T n

B =X (ﬁ_ + 125" )

Then with probability at least 1 — c; exp{—canA?}, the lasso
solution B has the following properties (next slide)
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Selection consistency theorem (Wainwright, 2009) (cont’d)

¢ Uniqueness: B is unique
o Estimation error bound: ||3 — %o < B
¢ No false inclusions: S C S
« No false exclusions: S includes all indices 7 such that
|87] > B and is therefore selection consistent provided that all

elements of B% are at least that large (this is known as a
“B-min" condition)
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