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Introduction

• In today’s lecture, we will discuss the performance of
nonconvex penalties with respect to the signal-to-noise ratio
of the data-generating process, the most critical factor
determining their success relative to the lasso
• We will then turn our attention to the details of model fitting,

discussing algorithms for nonconvex penalties as well as the
impact of nonconvexity on model-fitting
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Signal to noise ratio

• For linear regression,

Var(Y ) = Var(E(Y |X)) + E(Var(Y |X))
= β⊤Var(X)β + σ2

• The first term in the sum is known as the signal and the
second term the noise
• Thus, we may define the signal-to-noise ratio

SNR = β⊤Var(X)β/σ2
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SNR and R2

• Recall that we have seen this decomposition before, in
calculating R2, which is also a function of the signal and noise
• In particular, note that

R2 = SNR
1 + SNR

• As a general piece of advice, I strongly recommend
considering the signal-to-noise ratio when designing
simulations, and avoiding settings where SNR is, say, 50
(R2 = .98); is this realistic?
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Simulation: Setup

• To see the impact of SNR, let’s set n = 50, p = 100, and let
all features xj follow independent, standard Gaussian
distributions
• In the generating model, we set β1 = β2 = β3 = · · · = β6 ̸= 0

and β7 = β8 = · · · = β100 = 0, varying the nonzero values of
β1 through β6 to produce a range of signal to noise ratios
• For each data set, an independent data set of equal size was

generated for the purposes of selecting the regularization
parameter
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Simulation: Results

MCP SCAD
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Remarks

• The motivation of MCP/SCAD/etc. is to eliminate bias for
large coefficients; it should not come as little surprise, then,
that the advantage of these methods only becomes apparent
when some nonzero coefficients are large
• It is also worth noting that γ ≈ 3 is generally a reasonable

choice for MCP – its performance was never far from the best
• Also note that the SCAD is somewhat less sensitive to the

choice of γ, in the sense that many values of γ produce rather
lasso-like estimates
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Coordinate descent
Local approximations
Convexity

Algorithm

Letting z̃ = n−1x⊤
j r̃j , F is the firm-thresholding operator, and

TSCAD is the SCAD-thresholding operator, the CD algorithm for
MCP/SCAD is

repeat
for j = 1, 2, . . . , p

z̃j = n−1 ∑n
i=1 xijri + β̃

(s)
j

β̃
(s+1)
j ←

{
F (z̃j |λ, γ) for MCP, or
TSCAD(z̃j |λ, γ) for SCAD

ri ← ri − (β̃(s+1)
j − β̃

(s)
j )xij for all i

until convergence
The algorithm is identical to our earlier algorithm for the lasso
except for the step in which β̃j is updated
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Coordinate descent
Local approximations
Convexity

Convergence

• Although the MCP and SCAD penalties are not convex
functions, Q(βj |β−j) is still convex
• As a result, the coordinate-wise updates are unique and always

occur at the global minimum with respect to that coordinate
• Proposition: Let {β(s)} denote the sequence of coefficients

produced at each iteration of the coordinate descent
algorithms for SCAD and MCP. For all s = 0, 1, 2, . . .,

Q(β(s+1)) ≤ Q(β(s)).

Furthermore, the sequence is guaranteed to converge to a
local minimum of Q(β).
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Coordinate descent
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Local linear approximation

• For MCP and SCAD, one can obtain closed-form
coordinate-wise minima and use those solutions as updates
• An alternative approach, particularly useful in penalties that

do not yield tidy closed-form solutions, is to construct a local
approximation of the penalty about a point β̃:

P (|β|) ≈ P (|β̃|) + Ṗ (|β̃|)(|β| − |β̃|)

• Note that with this approximation, the penalty takes on the
form of the lasso penalty (with Ṗ (|β̃|) playing the role of the
regularization parameter) plus a constant
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Coordinate descent
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LLA algorithm

• The approximation is applied in an iterative fashion: at the
sth iteration, letting λ̃j = Ṗ (|β(s−1)

j |), the update is given by
solving for the value minimizing

1
2n
∥y−Xβ∥2 +

p∑
j=1

λ̃j |βj |

• Note that this equation is essentially identical to the one for
the adaptive lasso; however, the adaptive lasso weights are
assigned in a more or less ad hoc fashion based on an initial
estimator, while the LLA modifications to λ are explicitly
determined by the penalty function P
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Coordinate descent
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Remarks

• Like coordinate descent, the local linear approximation (LLA)
algorithm is guaranteed to drive the objective function
downhill with every iteration and to converge to a local
minimum of Q(β)
• For MCP and SCAD, CD is more efficient, as it avoids the

extra approximation introduced by LLA
• However, LLA is still quite efficient, and a valuable alternative

when dealing with penalties without a simple solution in the
one-dimensional case
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Convexity challenges

• While the objective functions for SCAD and MCP are convex
in each coordinate dimension, they are not convex over Rp

• Thus, multiple minima may exist, each satisfying the KKT
conditions
• Neither the CD or LLA algorithms are guaranteed to converge

to the global minimum in such cases
• As we have discussed earlier, the existence of multiple minima

poses problems, both numerically (convergence to an inferior
solution) and statistically (increased variance as the solution
jumps from one minima to another)
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Coordinate descent
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Convexity

Global convexity

• It is worth noting that it is possible for the objective function
Q to be convex with respect to β even though the penalty
component is nonconvex
• Letting cmin denote the minimum eigenvalue of X⊤X/n, the

MCP objective function is strictly convex if γ > 1/cmin, while
the SCAD objective function is strictly convex if
γ > 1 + 1/cmin

• In this case, the coordinate descent and LLA algorithms will
converge to the unique global minimum of Q
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Coordinate descent
Local approximations
Convexity

Is global convexity desirable?

• However, obtaining strict convexity is not always possible or
desirable; for example, in high-dimensional settings where
p > n, cmin = 0 and the MCP/SCAD objective functions
cannot be globally convex
• Nevertheless, as we saw in the earlier simulations (where

p > n), convex penalties do not necessarily outperform
nonconvex in these scenarios
• For low signal-to-noise ratios there was indeed some benefit to

increasing γ in an effort to make the objective function more
convex; however, for larger SNR values, this strategy
diminished estimation accuracy
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Convexity

Local convexity

• Although Q(β) may not be convex over the entire
p-dimensional parameter space (i.e., globally convex), it is still
convex on many lower-dimensional spaces
• Some authors have advocated choosing solutions in the

“locally convex” portion of the solution path (i.e., based on
the minimum eigenvalues of the active features)
• Thus, local convexity of the objective function will not be an

issue for large λ, but may cease to hold as λ is lowered past
some critical value λ∗
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Convexity diagnostic: Example (MCP)
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Convexity

Remarks

• As the figure indicates, when λ = 0.35, β1 clearly minimizes
the objective function, whereas at λ = 0.15, Q(β2) < Q(β1)
• For λ ≈ 0.25, however, the objective function is very broad

and flat, indicating substantial uncertainty about which
solution is preferable
• Calculation of the locally convex region (the unshaded region

in the earlier figure) can be a useful diagnostic in practice to
indicate which regions of the solution path may suffer from
multiple local minima and discontinuous paths
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Breast cancer gene expression study
WHO-ARI study

Introduction

• Let us now revisit two high-dimensional studies from the
previous topic and analyze them with our new reduced-bias
approaches
• First, we consider an adaptive lasso model for the BRCA1

gene expression data
• As our initial estimator, let’s use lasso estimates with λ

chosen according to BIC:

fit <- ncvreg(X, y, penalty='lasso')
b <- coef(fit, which=which.min(BIC(fit)))[-1]

(using ncvreg for fitting due to its compatibility with BIC)
• Cross-validation would of course be a reasonable alternative
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Breast cancer gene expression study
WHO-ARI study

Adaptive lasso fit

Once we have the initial estimator, it may be tempting to fit an
adaptive lasso model as follows:

w <- abs(b)ˆ(-1) # Calculate weights
w <- pmin(w, 1e10) # cv.glmnet does not allow

# infinite weights
cvfit <- cv.glmnet(X, y, penalty.factor=w,

lambda.min=1e-5)

but caution is warranted
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Breast cancer gene expression study
WHO-ARI study

Adaptive lasso: Cross-validation (biased)
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Breast cancer gene expression study
WHO-ARI study

Adaptive lasso: Cross-validation (unbiased)
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Breast cancer gene expression study
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Regular lasso: Cross-validation
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Source of bias

• In the first figure, the CV error is not estimated in an
unbiased manner
• The reason is that the left-out fold is not truly external to the

fitting procedure, as it was used to obtain an initial estimator
• As a result, prediction error is underestimated
• To obtain an (approximately) unbiased estimate of CV error,

one must cross-validate the entire procedure, including the
initial estimate
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Remarks

• CV errors:
◦ Lasso: 0.20
◦ Adaptive lasso (biased): 0.18
◦ Adaptive lasso (unbiased): 0.22

• This is an important cautionary example to keep in mind for
the adaptive lasso: flexible, two-stage methods have certain
advantages in terms of simplicity, but are also easy to make
mistakes with
• Unfortunately, while existing R packages can be used to fit

adaptive lasso models, there are not currently any
comprehensive software packages for the adaptive lasso (that I
am aware of) that carry out full cross-validation
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MCP analysis

• MCP and SCAD achieve the adaptive lasso’s goal of reducing
the bias associated with the lasso, but do so in a single step
and thus prove a bit more amenable to carrying out inference
concerning predictive accuracy using cross-validation
• The ncvreg package is a widely used package for fitting

MCP/SCAD penalized regression models; its syntax is fairly
similar to glmnet
• Let’s fit two penalized regression models to the BRCA1 data,

one with γ = 3 and the other with γ = 7:

cvfit3 <- cv.ncvreg(X, y) # gam=3 is default
cvfit7 <- cv.ncvreg(X, y, gamma=7)
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Results: MCP
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Breast cancer gene expression study
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CV Results: MCP
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summary (γ = 3)

ncvreg provides a useful summary function for fitted CV objects:

summary(cvfit3)
# MCP-penalized linear regression with n=536, p=17322
# At minimum cross-validation error (lambda=0.0539):
# -------------------------------------------------
# Nonzero coefficients: 32
# Cross-validation error (deviance): 0.24
# R-squared: 0.53
# Signal-to-noise ratio: 1.15
# Scale estimate (sigma): 0.486
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summary (γ = 7)

And the equivalent summary for γ = 7:

summary(cvfit7)
# MCP-penalized linear regression with n=536, p=17322
# At minimum cross-validation error (lambda=0.0508):
# -------------------------------------------------
# Nonzero coefficients: 49
# Cross-validation error (deviance): 0.21
# R-squared: 0.59
# Signal-to-noise ratio: 1.45
# Scale estimate (sigma): 0.455
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Remarks

• For both models, the minimum error is CV = 0.21; very close
to, although slightly larger than the CV = 0.20 achieved by
the lasso
• However, the two models select very different numbers of

variables, both compared to each other and compared to the
lasso, which selected 96 nonzero coefficients
• The most striking difference between the two solution paths is

that for MCP with γ = 3, the the optimal solution occurs in
the region that is not locally convex
• As this is real data, we cannot know which estimates are more

accurate
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SCAD

Finally, let us fit a SCAD-penalized regression model to this data
(γ = 8):

cvfit_scad <- cv.ncvreg(X, y, gamma=8, penalty='SCAD')
summary(cvfit_scad)
# SCAD-penalized linear regression with n=536, p=17322
# At minimum cross-validation error (lambda=0.0464):
# -------------------------------------------------
# Nonzero coefficients: 82
# Cross-validation error (deviance): 0.20
# R-squared: 0.60
# Signal-to-noise ratio: 1.53
# Scale estimate (sigma): 0.448
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Results: SCAD (γ = 8)

The SCAD results are more lasso-like than MCP is (as one would
expect since the penalties are more similar)
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Remarks

• This is just one example, but these results seen are fairly
representative, in my experience
• The prediction performance (as estimated by cross-validation)

is typically similar between MCP/SCAD/lasso, but there can
be substantial differences in terms of the estimates themselves
• The main advantage in practice of MCP (or SCAD) is the

ability to achieve that prediction performance using fewer
features
• Finally, the results of SCAD are almost always in between

those of MCP and lasso
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WHO-ARI: MCP

• Let us also revisit the WHO study of acute respiratory illness,
which you have looked at a few times in your homework
assignments
• Let us fit an MCP-penalized regression model to this data

using γ = 6 and compare it to the fit of the lasso:

fold <- assign_fold(y, 10)
cvfit_mcp <- cv.ncvreg(XX, y, gam=6, fold=fold)
cvfit_las <- cv.ncvreg(XX, y, penalty="lasso",

fold=fold)

• When making these kinds of comparisons, keep the CV fold
assignments the same, otherwise you risk mistaking the effect
of different folds for the effect of the penalty
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Results: CV
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Results: Coefficient path
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Summary: MCP

summary(cvfit_mcp)
# MCP-penalized linear regression with n=816, p=66
# At minimum cross-validation error (lambda=0.0324):
# -------------------------------------------------
# Nonzero coefficients: 26
# Cross-validation error (deviance): 1.21
# R-squared: 0.41
# Signal-to-noise ratio: 0.68
# Scale estimate (sigma): 1.099
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Summary: Lasso

summary(cvfit_las)
# lasso-penalized linear regression with n=816, p=66
# At minimum cross-validation error (lambda=0.0213):
# -------------------------------------------------
# Nonzero coefficients: 39
# Cross-validation error (deviance): 1.20
# R-squared: 0.41
# Signal-to-noise ratio: 0.69
# Scale estimate (sigma): 1.097
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