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Preface

The subject of the book is penalized regression modeling for high-
dimensional data. Increasingly, the data collected in many fields is high-
dimensional, in the sense that many characteristics, or features, are
recorded for each observation. The collection of this kind of data is a rela-
tively recent phenomenon, and it poses many challenges that traditional
statistical methods have proven incapable of addressing. During the past
two decades, penalized regression models have become a widespread and
important tool for analyzing these kinds of data sets. Although there is
a large literature on this topic, the field is still relatively new and there
are few books available to individuals looking for an organized overview
of this area.

Furthermore, there has been a fair amount of recent research devel-
oping inferential methods for high-dimensional data, including the con-
struction of confidence intervals for penalized regression parameters and
the estimation of false discovery rates and prediction error. As of this
writing, few books are available summarizing these various approaches
and illustrating their use in applied settings.

Our aim is to cover the concepts behind penalized regression, survey
the variety of specific methods and models that have been proposed,
present the relevant theoretical properties of penalized regression meth-
ods, provide an understanding of the algorithms used to fit these models,
and discuss the practical aspects of using these methods to analyze real
data. In particular, we have included numerous case studies of real data
with reproducible R code to illustrate the use of various penalized re-
gression packages.

Intended audience

We expect the book to be of interest to practicing statisticians and
researchers who work with high-dimensional data or are interested in
getting into the field, to students interested in high-dimensional modeling
as a research area, and to instructors looking to develop a course on this
topic.

This book is intended to be accessible to individuals who have com-
pleted at least one year of study in a statistics or biostatistics program.
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xvi High-Dimensional Regression Modeling

Specifically, we assume knowledge of basic mathematical statistics at the
level of Statistical Inference by Casella and Berger or higher, and a ba-
sic knowledge of linear models and matrix algebra. In addition, we will
provide examples of data analysis using R, so some basic knowledge of
how to use R will be important in order to follow along in those sections.

This book can serve as the primary textbook for a graduate-level
elective on high-dimensional modeling in either a statistics or biostatis-
tics department. Indeed, I have used this book as the text for the course
“High-Dimensional Data Analysis” at the University of Iowa, which I
have taught several times. For a one-semester course, I cover Parts I and
II more or less in their entirety, and pick a handful of topics from Part
IV, any of which can be taught after seeing Parts I and II. Part III,
on other likelihood functions, is valuable material but in my experience
difficult to cover in the interest of time and sometimes inaccessible (e.g.,
regularized Cox regression if some students have not taken a course in
survival analysis).

Starred sections

Starred sections: these sections are more technical than the rest of the
book. They include important proofs and mathematical results, but can
be skipped if the reader is not interested.

R package

We include numerous sections of code in the book to demonstrate how
to use available software for penalized regression modeling, including
important options to be aware of, what they do, and when and why you
might choose to modify them.

Furthermore, this book is intended to offer a “hands-on” experience,
so that figures, simulations, analyses, etc. can be reproduced by the
reader. To accomplish this, we provide an R package called hdrm, avail-
able at https://github.com/pbreheny/hdrm. To install the package,
either download the latest release at the URL provided or open R and
install hdrm using the remotes package:

remotes::install_github("pbreheny/hdrm")

Once installed, load the package with library(hdrm). You can then
reproduce, say, Figure 9.3, with

Fig9.3()
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Likewise, you can reproduce Example 9.1 with Ex9.1() and Table 9.4
with Tab9.4().

Running Fig9.3() will reproduce Figure 9.3 exactly as it appears in
the book. However, options for changing various parameters are usually
available. For example, to run a simulation with a different seed than
the one used in the book,

Fig9.3(seed=12345)

Likewise, some of the simulations are quite time-consuming to run. To
run them with a smaller number of replications (say, if the default was
N=1000,

Fig9.3(N=100)

Finally, one might be interested in changing the parameters of a sim-
ulation. For example, perhaps the book illustrates the case where the
correlation is 0.5; you might be interested in what the figure looks like
with either greater or weaker correlation:

Fig9.3(rho=0.8)

Fig9.3(rho=0.2)

Check the documentation (?Fig9.3) for a list of available options.
Finally, note that some of the code to construct figures and tables

is referred to in the text. For example, the text might say that “Figure
2.12 was produced with”

plot(fit)

which is mostly true in the sense that if you run plot(fit) you will
obtain mostly the same plot. However, many of the figures in the book
were modified for aesthetic purposes. So the actual code used to con-
struct Figure 2.12 may have been

plot(fit, xvar="lambda", las=1, xlab=expression(lambda), xaxt="n",

bty="n", xlim=xlim, col=pal(nv), lwd=2)

at <- seq(xlim[1], xlim[2], length=5)

axis(1, at=at, labels=round(exp(at), 2))

abline(v=log(cvfit$lambda.min), col="gray", lty=2, lwd=2)

abline(v=log(cvfit$lambda.1se), col="gray", lty=2, lwd=2)

This was done to avoid cluttering the text and the main idea of the code
with a bunch of graphical options. If you want to reproduce the figure
exactly, that is what Fig9.3() is for. You can also run Fig9.3 without
the parentheses to print the code and see exactly which options were
specified.





Symbols

THIS IS JUST A DUMMY SYMBOL LIST FROM THE PUBLISHER.
WE MAY OR MAY NOT WANT TO ACTUALLY INCLUDE A LIST
LIKE THIS.

Symbol Description

α To solve the generator
maintenance scheduling,
in the past, several math-
ematical techniques have
been applied.

σ2 These include integer pro-
gramming, integer linear
programming, dynamic
programming, branch
and bound etc.∑
Several heuristic search
algorithms have also been
developed. In recent years
expert systems,

abc fuzzy approaches, simu-
lated annealing and ge-

netic algorithms have also
been tested.

θ
√
abc This paper presents a sur-

vey of the literature
ζ over the past fifteen years

in the generator
∂ maintenance scheduling.

The objective is to
sdf present a clear picture of

the available recent liter-
ature

ewq of the problem, the con-
straints and the other as-
pects of

bvcn the generator mainte-
nance schedule.
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1

Introduction

1.1 High-dimensional data

This book concerns the analysis of data in which we are attempt-
ing to predict an outcome Y using a number of explanatory factors
X1, X2, X3, . . ., some of which may not be particularly useful. Although
the methods we discuss here can be used solely for prediction (i.e., as
a “black box”), we generally adopt the perspective that we are also in-
terested in understanding the relationship between X and Y . That is,
we would like the statistical methods to be interpretable and to explain
something about the relationship between the features and the outcome.

Regression models are an attractive framework for approaching prob-
lems of this type, with a long history, solid statistical foundations, and
a rich catalog of extensions that were developed over the course of the
20th century. These classical tools were intended for situations in which
the number of explanatory factors was relatively small, and indeed, tend
to work very well in those situations.

Modern computation, however, has changed the way science is con-
ducted. Computers along with automated technologies have enabled re-
searchers to easily collect, store, and access data for large numbers of
features. This phenomenon occurs over a wide range of fields, technolog-
ical developments, and orders of magnitude; for example:

� Advances in information technology such as REDCap have made
it easy to manage online surveys and assemble databases contain-
ing dozens, or even hundreds, of variables.

� The adoption of electronic medical records have made it possible
to link diverse sources of clinical data and patient care informa-
tion (lab tests, medications administered, vital signs, personal and
family histories, etc.) and integrate them into data sets containing
hundreds, or even thousands of variables.

� Molecular biology technologies such as microarrays and RNA-Seq
have made it possible to systematically measure gene expression

3
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across the entire transcriptome, consisting of tens of thousands of
measurements per sample.

� Dramatic advances in genotyping in the wake of the Human
Genome Project has enabled researchers to conduct genome-wide
genetic association studies in which hundreds of thousands, or
even millions of genetic variants are measured for each individual
in the study.

The list above concentrates on manifestations of this phenomenon
in medicine and biology, which reflects the backgrounds of the authors.
Throughout this book we will generally illustrate the application of var-
ious methods using examples from these areas because it is what we are
most familiar with and can speak most knowledgeably about, but the
same phenomenon is, without question, occurring throughout all scien-
tific disciplines. From economists analyzing financial transaction data to
astronomers looking at electromagnetic spectra to chemists predicting
the chemical activity of a compound from its physiochemical and struc-
tural properties, the general pattern of collecting information about a
large number of features and attempting to predict a quantity of inter-
est in a data-driven manner is now a pervasive approach in all areas of
modern science.

This type of data is known as high dimensional data. Specifically, let
n denote the number of independent observations (e.g., for a biomedical
study, the number of patients or samples) and p denote the number of
features recorded for each independent unit. In high-dimensional data,
p is large with respect to n. Often, this means that p is larger than n,
possibly much larger than n – this would certainly be the case for the
gene expression and genetic association studies described above. How-
ever, many of the general principles and specific methods we describe
in this book also pertain to situations in which p is smaller than n. For
example, if n = 100 and p = 80, one may still fit a classical regres-
sion model, but the estimates will be highly variable and the analytic
approach far from optimal.

It is worth noting that high dimensional data is not a synonym for
“big data”. There are many situations arising in modern data analysis
in which n is extremely large (e.g., the type of databases compiled by
companies like Facebook and Google). These also represent interesting
challenges, both statistically and computationally, but are not the focus
of this book.

We will adopt the following general notation throughout the book,
all of which is fairly common in the regression literature. Let X denote
the n × p matrix containing the predictor variables, with element xij
recording the value of the jth feature for the ith independent unit, and
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let y denote the length-n vector of response values. For the sake of
simplicity, we begin by treating Y as a continuous, normally distributed
variable (Chapters 1-8), but consider several other types of distributions
for Y in Part III.

1.2 Large-scale univariate testing

A simple, widely used approach to analyzing high-dimensional data is to
split the problem up into a large number of low-dimensional problems.
Specifically, rather than trying to regress y simultaneously on all the
features, we can carry out p separate single-variable regressions, one for
each feature:

yi = αj + βjxij + ϵij (1.1)

ϵij
⊥⊥∼ N(0, σ2);

this approach is known as marginal regression.
The appeal of this approach is that the well-developed tools of classi-

cal regression methods can be easily applied to the separate analyses to
yield estimates {β̂j}pj=1, confidence intervals, and test hypotheses to pro-
duce p-values {pj}pj=1. The obvious complication, however, is that this
approach involves a large number of separate analyses that must some-
how be combined into a single set of results. Thus, while novel statistical
methodology may not be required to carry out the initial analyses, there
has been a great deal of innovation over the past 30 years in terms of
how to assess the results of a single analysis within the context of a large
number of other, comparable analyses.

From a classical standpoint, this situation may be viewed as a prob-
lem of simultaneous hypothesis testing, with a primary concern for con-
trolling the overall Type I error rate, also known as the family-wise error
rate (FWER). If we wish to limit the probability of falsely rejecting any
true null hypothesis to be less than or equal to α, we can compare each
pj to α/p, rejecting only those hypothesis for which pj ≤ α/p. This ap-
proach is known as the Bonferroni correction, and is easily shown by
Boole’s inequality to satisfy FWER ≤ α. Many other methods exist
for controlling the FWER, but the Bonferroni correction is the simplest
and most widely used approach, and illustrates the basic idea of FWER
control.

When p is large, strict FWER control can be extremely conserva-
tive. For example, suppose that out of the hypotheses being tested, 100
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were rejected, with only one of those hypotheses falsely rejected. This
seems like a successful result to many people, yet it is much too liberal
according to FWER, because a Type I error has been committed. The
fraction of false rejections out of the total rejected hypotheses is known
as the false discovery rate (FDR). In a seminal and highly influential
paper, Benjamini and Hochberg (1995) proposed the following rule: for
any fixed value q, letting p(1), p(2) denote the sorted p-values and jmax

denote the largest index for which p(j) ≤ jq/p, reject any hypothesis Hj

for which pj ≤ p(jmax). Benjamini & Hochberg proved that this approach
controls the expected FDR at the level q under the assumption that the
tests are independent. In the decades since its original proposal, the idea
of FDR control has become a widely accepted approach to carrying out
simultaneous inference in the large-scale setting, and many authors have
subsequently extended the idea in various ways, as well as explored the
control of FDR under various situations of dependence among the tests.

Benjamini & Hochberg’s perspective on carrying out separate anal-
yses was entirely frequentist in the sense of controlling long-run propor-
tions; however, false discovery rates blur the lines somewhat between
estimation and testing as well as between frequentist and Bayesian ap-
proaches. False discovery rates can also be motivated from Bayesian
(Storey and Tibshirani, 2003) as well as Empirical Bayes (Efron et al.,
2001) perspectives. There is a large literature on false discovery rates
and related approaches to carrying out inference for large numbers of
comparable analyses; this literature lies outside the scope of this book.
Our focus is on carrying out a single joint analysis of the relationship
between the features and the response, rather than on simultaneous in-
ference for a large number of separate analyses. Nevertheless, the idea
of false discovery rates is certainly relevant in the context of variable
selection, and we discuss the estimation of FDR in the context of high-
dimensional regression in Chapters 6 and 8. For readers looking to learn
more about the subject of large-scale univariate testing, we recommend
Brad Efron’s excellent book, Large Scale Inference (Efron, 2010).

1.3 High-dimensional modeling

Although carrying out separate univariate regressions is very com-
mon and relatively straightforward, there are several drawbacks to the
marginal approach described in the previous section:

� Marginal regression fails to account for correlation among the
features. Thus, many features are likely to appear significant even



Introduction 7

though they are simply correlated with other features related to
the outcome.

� For the same reason, marginal regression provides no way to es-
timate the independent effect of a feature while other features
remain unchanged.

� By failing to incorporate features with predictive accuracy, weak
associations between features and the outcome may be masked.
In other words, marginal regression has lower power to discover
relationships between features and the outcome than a joint re-
gression analysis.

� Marginal regression provides no way to combine the predictions
of each separate regression into a single response prediction.

� Finally, marginal regression provides no way of assessing the over-
all proportion of the variability in the outcome that may be ex-
plained by the features. In some contexts, this proportion is of
considerable scientific interest; for example, in genetics, the pro-
portion of variation in the phenotype that can be explained by
genetic variation is known as the heritability.

These issues can only be resolved by considering a joint model of the
relationship between y and the full set of features {xj}pj=1:

yi = β0 +

p∑
j=1

βjxij + ϵi (1.2)

ϵi
⊥⊥∼ N(0, σ2).

Unlike equation (1.1), here we are fitting a single model in which we
estimate a vector of regression coefficients β.

The maximum likelihood approach involves solving for the value of
β, known as the maximum likelihood estimator (MLE), that minimizes
the residual sum of squares ∥y − Xβ∥2. Here, ∥v∥ =

√∑
i v

2
i denotes

the Euclidean norm. This constitutes a linear system of equations whose
solution is given by

X⊤Xβ̂ = X⊤y (1.3)

=⇒ β̂ = (X⊤X)−1X⊤y if X⊤X is invertible (1.4)

Because the estimator β̂ is found by minimizing a sum of squares, it is of-
ten referred to as the least squares or “ordinary least squares” (OLS) esti-
mate. The multiple regression least squares estimate has well-recognized
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benefits such as yielding best linear unbiased estimates of β, and re-
solves the issues raised in the list at the beginning of this section, such
as yielding integrated predictions using all features simultaneously.

However, there are many drawbacks to the use of maximum likeli-
hood for estimating β when p is large. Most dramatically, when p > n the
matrix X⊤X is not invertible and equation (1.3) has no unique solution.
However, it is not only the maximum of the likelihood that is affected
by dimensionality. Even if X⊤X can be inverted and a unique maximum
identified, as the dimension grows and X⊤X approaches singularity, the
likelihood surface becomes very flat. This means that a wide range of
values of β are consistent with the data and wide confidence intervals re-
quired to achieve, say, 95% coverage. In particular, V(β̂) = σ2(X⊤X)−1,

with the consequence that as p→ n, V(β̂) increases without bound.
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FIGURE 1.1
Largest variance of β̂ as p→ n. The matrix has been standardized (see
Section 1.6.2) and σ2 = n = 20 to make the variance of the first estimate
exactly 1.

To illustrate, consider a matrix X with n = 20 rows and p = 19
columns and whose elements consist of normally distributed random
numbers. Figure 1.1 plots the largest variance of the β̂j estimates (i.e.,
the largest diagonal element of σ2(X⊤X)−1) as we include an increasing
number of columns inX. As the figure illustrates, the increase in variance
is substantial as p approaches n, and infinite when p ≥ n. Although we
can still obtain unique solutions at p = 15, the variance of these solutions
is over 20 times larger than when p = 1. In this example, the largest
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variance is nondecreasing with respect to p; this holds for any matrix
(Exercise 1.1).

Clearly, maximum likelihood cannot directly accommodate high di-
mensional data without running into serious problems with identifiability
and inefficiency. However, when many features are unrelated to the out-
come (in the sense that βj = 0), it is possible to modify the maximum
likelihood approach without abandoning it completely. Specifically, we
could apply maximum likelihood only to the variables for which βj ̸= 0.
By working with this smaller, identifiable subspace of Rp, we can avoid
the problems described above.

If we know in advance which elements of β are zero and which are
not, then everything is straightforward: we simply fit model (1.2) using
maximum likelihood, but including only the nonzero elements; this is
known as the oracle model. Obviously, the oracle model is a theoretical
gold standard, not a realistic approach to data analysis, as it would
require consultation with an oracle that could tell you which features
are related to the outcome and which are not. In the real world, we will
have to use the data in order to make empirical decisions about which
features are related to the outcome and which are not; this is known as
model selection, and is discussed in the next section.

1.4 The model selection problem

The previous section pointed out the difficulties that arise in trying to
use maximum likelihood estimation in high dimensions. Because these
problems do not manifest themselves in low-dimensional maximum like-
lihood, a natural and very widespread strategy for dealing with high-
dimensional data is to adopt a two-stage approach in which (1) we at-
tempt to select the important parameters, then (2) apply maximum like-
lihood to the lower-dimensional space containing only these parameters.
Unfortunately, using the same data for both purposes (model selection
and inference) introduces substantial biases and invalidates the inferen-
tial properties that maximum likelihood typically possesses.

Example 1.1. To illustrate, consider the following simulation:

xij
⊥⊥∼ Unif(0, 1) for j in 1, 2, . . . , 100

yi
⊥⊥∼ N(0, 1)

for i in 1, 2, . . . , 25. We will apply forward selection using BIC to identify
the important variables up to a maximum of 5 selections, then fit a
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maximum likelihood regression model using those variables, with the
standard multiple linear regression result

β̂ ∼ N(β, σ2(X⊤X)−1) (1.5)

used to carry out hypothesis testing and construct confidence intervals.
Finally, we repeat the entire process 100 times to get a sense of how well
this works in general.
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FIGURE 1.2
Sampling distribution of β̂ in the presence of bias arising from model
selection. The true value is β = 0.

In general, this procedure performs very poorly. A histogram of the
β̂ estimates resulting from this procedure is shown in Figure 1.2. As the
figure illustrates, by using the data set for model selection as well as esti-
mation and inference, we have distorted the actual sampling distribution
of β̂ far away from the sampling distribution (1.5) we use to carry out
inference. This has dramatic consequences for the performance of this
approach in terms of estimation, prediction, variable selection, and the
validity of inference.

Estimation: As Figure 1.2 illustrates, the model selection process
heavily biases the estimates of the regression coefficients away from zero.
Most estimates are approximately ±1.5 instead of being close to 0, the
true value. In particular, the average value of β̂2

j is 2.7. In comparison,

the expected value of β̂2
j for fitting a simple linear regression model to



Introduction 11

this data in an unbiased manner (i.e, without the model selection step)
is 0.52. Thus, the mean squared error of estimation is increased about
5-fold by the model selection process.

This is sometimes referred to as the phenomenon of the “winners’
curse.” Although linear regression is in general unbiased, model selection
introduces selection bias. In particular, a coefficient is far more likely
to be selected if its coefficient is overestimated; this is clearly seen in
Figure 1.2. Thus, the true value of any estimate arising from a post-
selection model is likely to be closer to zero than the MLE would indicate.

Variable selection: Here, we imposed an upper bound of 5 on the
number of variables we allowed to be selected by the BIC-guided for-
ward selection process. In all 100 of our replications, this upper bound
was reached; in other words, the forward selection process would have
continued to select additional variables if allowed to do so. Obviously,
since the true model in this case is the null (intercept-only) model, the
model selection process we have employed here results in systematic
overfitting.

While it is true that in an asymptotic sense, using BIC for model
selection will select the true model with probability tending to 1, that
asymptotic argument relies on p remaining fixed while n → ∞, or in
other words, on n ≫ p. Clearly, the asymptotic model-selection consis-
tency of BIC is misleading in high-dimensional settings like this one,
where BIC cannot be relied on for accurate variable selection. There
have been efforts to modify BIC and correct this deficiency in high-
dimensional settings (in particular the extended BIC, or EBIC (Chen
and Chen, 2008)), but a fundamental challenge remains: in order to apply
a criterion-based model selection approach, we must fit a large number
of models and calculate the criterion for each model. In high dimensions,
the number of possible models is 2p and it is no longer possible to fit all
models and rank them. Instead, we must use greedy, stepwise approaches
such as the forward selection we have used here; such approaches have
no guarantee that they will identify the best model.

Prediction: On average, the prediction error (defined in Chap-
ter 1.5) of the selected model is 2.15. In comparison, the null model has
a prediction error of V(Y ) = 1. Thus, by carrying out model selection,
we have doubled its prediction error.

Inference: Finally, and perhaps most importantly, let us consider
the validity of the inferences that we obtain from (1.5), ignoring the
fact that we are using the data twice (once for selection and once for
inference). From a hypothesis testing perspective, the p-values arising
from testing H0 : βj = 0 for each of the selected coefficients range from
0.4 to 3× 10−10, with a median p-value of 0.0013. These results give the
impression that rejecting H0 and concluding that βj ̸= 0 is sound and
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unlikely to produce many Type I errors. This impression, of course, is
entirely misleading, as βj = 0 for all j in this example.

We may also consider the validity of constructing 95% confidence
intervals for the selected coefficients according to the usual linear regres-

sion procedure: β̂j ± t.975,19SEj , with SE =

√
V(β̂j) and V(β̂) given by

(1.5). The actual coverage achieved by this procedure with a nominal
95% coverage rate is less than 5%. As with hypothesis testing, ignor-
ing selection effects when carrying out post-selection inference produces
conclusions that are far too liberal, with actual errors accumulating at
a much higher rate than the statistical inferential approaches would in-
dicate.

This section paints a grim picture of the two-stage approach of se-
lecting important variables and then applying maximum likelihood: es-
timates are biased away from zero, models are overfit, predictions are
poor, p-values are far smaller than they should be, and confidence inter-
vals are far narrower than they should be. In summary, this approach is
wildly optimistic and overconfident. In most high-dimensional settings,
there is considerable uncertainty in terms of the truly nonzero variables
– ignoring this uncertainty, as in the two-stage approach, results in fun-
damentally invalid inferences.

These problems are, of course, widely recognized. They are also, un-
fortunately, widely ignored in practice. Post-selection confidence inter-
vals and hypothesis tests are widely reported in the literature, and even
regularly appear in introductory statistical textbooks on regression mod-
eling.

A simple potential safeguard against these problems is to split the
data into two components: one for model selection and one for inference.
This avoids most, if not all, of the problems outlined above. However,
this approach is often unsatisfactory for two reasons. First, such a split
is arbitrary, with different choices potentially leading to substantially
different results. This complicates the reproducibility of the analysis.
Second, splitting the data involves reducing the sample size in half; this
reduces the accuracy of both the model selection and the parameter esti-
mation. Unless the sample size is very large, most analysts are unwilling
to sacrifice half of their data for purposes of model validation.

The problem of developing statistical methods capable of simulta-
neous variable selection and inference has challenged statisticians for
decades, from Scheffé (Scheffe, 1953) to the present; see Berk et al. (2013)
and the citations therein for further references. One of the primary goals
of this book is to demonstrate the extent to which recent developments
in penalized regression address and alleviate the concerns about simul-
taneous selection and inference raised in this section.
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1.5 Prediction

Before we introduce penalized regression, however, let us first discuss
the general problem of how to choose between various models. With
real data, using estimation accuracy is not possible, as estimation in-
volves unknown population quantities. Prediction, however, depends on
observable quantities and can be evaluated. Thus, the main idea of most
approaches to model selection is that if model A predicts future obser-
vations better than model B, then we should prefer model A to model
B. However, evaluating prediction error is not as straightforward as it
may seem, and there are many competing approaches.

1.5.1 Prediction error

Consider the general regression model

yi = f(xi) + εi, i = 1, . . . , n,

where Var(εi) = σ2. By fitting a model, we obtain ŷi = f̂(xi), the

model’s point prediction for yi; for linear regression, f̂(xi) = x⊤
i β̂. Dif-

ferent models will of course produce different predictions. It is mislead-
ing, however, to evaluate predictive accuracy by comparing ŷi to yi: the
observed value yi has already been used to calculate ŷi, and is therefore
not a genuine prediction. Indeed, for linear regression ŷi is precisely cal-
culated so that it minimizes the total squared difference between ŷi and
yi, or the residual sum of squares:

RSS =

n∑
i=1

(yi − ŷi)2.

Simply calculating RSS, then, will substantially overestimate the true
predictive accuracy of the model (i.e., underestimate the prediction er-

ror). Instead, we must examine how well f̂(x) predicts new observations.
However, there are two ways of defining what exactly we mean by “new”
observations:

� PEX : Fit using (X,y), predict (X,ynew)

� PE: Fit using (X,y), predict (Xnew,ynew)

In the first scenario, new responses are obtained from the data gener-
ating mechanism for y|x but using the same feature values used to fit
the model; this approach is therefore conditional on X, hence the label
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PEX . In the second scenario, new features are obtained from the data
generating mechanism, and then new responses from y|xnew.

In principle, the first approach makes more sense if X represents a
fixed design matrix, as in a controlled experiment. In this scenario, the
concept of drawing new values of x from a distribution doesn’t make
sense. On the other hand, if the features are random (as they almost
always are in high-dimensional settings), it doesn’t make sense to fix X
at the values used to fit the model – and even if it did, it’s typically
impossible to do so with real data if the features are random.

As we will discuss in the next section, information criteria approaches
focus on PEX , whereas cross-validation approaches (Chapter 2.5.2) fo-
cus on PE. Throughout this book, when presenting simulation studies
involving prediction error, we present PE, as it seems to us more rea-
sonable in the high-dimensional setting. For example, in Example 1.1,
PE = 2.15 (as reported earlier) and PEX = 1.74. Nevertheless, both
approaches are reasonable ways to choose a model and both avoid the
primary concern, which is to avoid bias due to overfitting.

1.5.2 Model selection criteria

Analytic model selection criteria typically focus on minimizing the ex-
pected prediction error

E(PEX) = E
n∑

i=1

(ynewi − ŷi)2, (1.6)

where the expectation is taken over both the original observations
{yi}ni=1 as well as the new observations {ynewi }ni=1. It can be verified
(Exercise 1.6) that

E(PEX) = E
n∑

i=1

(yi − ŷi)2 + 2

n∑
i=1

Cov(ŷi, yi). (1.7)

The expected prediction error consists of two terms. The first term
is the within-sample fitting error; the second term is a bias correction
factor that arises from the tendency of within-sample fitting error to un-
derestimate out-of-sample prediction error, also known as the optimism
of the model fit. The second term can also be considered a measure of
model complexity. In fact, a general definition of the degrees of freedom
of a model is

df(λ) =

n∑
i=1

Cov(ŷi, yi)

σ2
. (1.8)
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This can also be written as

df =
tr{Cov(ŷ,y)}

σ2
,

where tr is the trace operator for a matrix, i.e., the sum of its diagonal
elements.

Example 1.2. Consider the linear regression model y = Xβ + ε with
Var(ε) = σ2I. The least squares fitted value is given by

ŷ = X(X⊤X)−X⊤y.

Since Cov(ŷ,y) = Cov(X(X⊤X)−X⊤y,y) = σ2X(X⊤X)−X⊤, we have

df =
tr{Cov(ŷ,y)}

σ2
= tr(X(X⊤X)−X⊤) = rank(X).

This agrees with our usual definition of degrees of freedom.

We now give brief descriptions of various model selection criteria that
can be used for model selection. A comprehensive description and the
full derivations of these methods is beyond the scope of this book; our
goal here is to introduce and motivate the various criteria.

To begin, let us turn our attention back to equation (1.7). We have
just discussed the second term in this expression, df. For the first term,
we can reasonably estimate E

∑n
i=1(ŷi(λ) − yi)2 by its observed value,

the residual sum of squares. Doing so, and dividing by σ2 to put both
terms on the same scale, we obtain a criterion known as the Cp statistic:

Cp =
RSS(λ)

σ2
+ 2df(λ). (1.9)

One downside of the Cp statistic is that it requires an estimate of σ2.
As we shall see in Section 2.6.1, estimation of σ2 is not a trivial matter,
particularly in high dimensional models.

The Cp criterion explicitly focuses on least squares as an objective.
The Akaike information criterion (AIC) is a generalization of the Cp

idea to maximum likelihood models. Rather than consider the expected
value of {ynewi − ŷi(θ̂)}2, Akaike proposed estimating the expected value

of log p(ynewi |θ̂), where θ̂ denotes the estimated parameters of the model
based on the original data {yi}ni=1. Asymptotically, a relationship similar
to equation (1.7) can be shown to hold for maximum likelihood estima-
tion, yielding

AIC = 2L(θ̂|X,y) + 2df, (1.10)
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where, as with Cp, the expected value E
∑n

i=1 log p(yi|θ̂) has been re-
placed by its observed value, the log-likelihood. For the normal distribu-
tion,

AIC = n log σ2 +
RSS

σ2
+ 2df + constant.

Thus, in the case of normally distributed errors with known variance σ2,
AIC and Cp are equivalent up to a constant.

A rather different approach is to consider model selection from
a Bayesian perspective. Letting M denote a given model, we would
be interested in calculating the posterior probability of M given the
data, P(M |X,y). If we assume a uniform prior across all models, then
P(M |X,y) ∝ P(y|X,M). In general, calculating this quantity involves
numerical integration, but this integral can be approximated to yield

logP(y|X,M) ≈ −L(θ̂|X,y)− 1

2
df log(n).

The Bayesian information criterion (BIC) is defined as −2 times this
quantity:

BIC = 2L(θ̂|X,y) + df log(n). (1.11)

Thus, choosing the model with the smallest BIC is (approximately)
equivalent to choosing the model with the highest posterior probabil-
ity.

Note that, despite the very different derivations, the equations for
AIC and BIC are surprisingly similar; the only difference is log(n) instead
of 2 as the multiplicative factor for df. In practice, this means that BIC
applies a heavier penalty to model complexity than does AIC (provided
n ≥ 8) and will therefore favor more parsimonious models.

1.6 Penalized regression

1.6.1 Penalized likelihood

The likelihood function ℓ(θ|Data) is defined as the probability distribu-
tion p(Data|θ), but considered as a function of the unknown parameter
θ, conditional on the observed data, as opposed to the probability distri-
bution, which describes the probability of observing various values of the
data for a fixed θ. Here, we are using p as a generic function to denote
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probability, probability density, or probability measure as appropriate
for the situation.

Throughout this book, we will use the notation L to refer to the
negative log-likelihood:

L(θ|Data) = − log ℓ(θ|Data) (1.12)

= − log p(Data|θ). (1.13)

Here, the function L is known as the loss function and we seek estimates
with a reasonably low loss. This is equivalent to finding a value (or
interval of values) with an acceptably high likelihood; the distinction
between maximizing a likelihood and minimizing a loss is arbitrary, but
we will use the loss function approach in agreement with the bulk of the
current literature on penalized regression.

In the context of linear regression, the loss function is

L(β|X,y) = n

2
log(2πσ2) +

1

2σ2

∑
i

(yi − x⊤
i β)

2

=
1

2σ2

∑
i

(yi − x⊤
i β)

2 + constant.

For the purposes of likelihood-based inference, it is only the difference
in loss functions between two values, L(β1|X,y)− L(β2|X,y), i.e., the
likelihood ratio, that is relevant. Thus, we can ignore the leading term
in the first equation above. For the purposes of finding the MLE, the
(2σ2)−1 factor may also be ignored, although we must account for it
when constructing likelihood-based intervals and answering other infer-
ential questions.

As we have seen, working with the above likelihood directly is prob-
lematic in high dimensions. Reducing the dimensionality through model
selection allows for some progress, but has several shortcomings. An al-
ternative way of dealing with the problem is to introduce a penalty.
Instead of the likelihood L(β|X,y), consider the function

Q(β|X,y) = L(β|X,y) + Pλ(β), (1.14)

where P is a penalty function that penalizes what one would consider
less realistic values of the unknown parameters, and λ is a regularization
parameter that controls the tradeoff between the two components. The
combined function Q is known as the objective function.

The parameter λ controls the tradeoff between the penalty and the
model fit, as measured by the likelihood. It is worth considering what
happens to Q as we change λ. As λ → 0, Q approaches L and we are
back where we started in terms of finding the optimal values of a nearly



18 High-Dimensional Regression Modeling

flat function. In other words, if λ is too small, we will tend to overfit
the data and obtain estimates with high variance and wide confidence
intervals. On the other hand, as λ → ∞, the penalty dominates the
objective function and all solutions will be close to zero. When λ is
too large, we will tend to underfit the data and end up with estimates
that are heavily biased towards zero. Thus, λ is directly responsible for
balancing the bias-variance tradeoff; obviously, selection of λ is a very
important practical aspect of fitting penalized regression models.

What exactly do we mean by “less realistic” values? The most com-
mon use of penalization is to impose an a priori belief that small regres-
sion coefficients are more likely than large ones; i.e., that we would not
be surprised if βj was 1.2 or 0.3, but would be very surprised if βj was
9.7×104. Without penalization, all of these values are equally likely un-
less the data alone can rule them out, which, as we have seen, is difficult
to accomplish in high dimensions. In Part IV of this book, we consider
other uses for penalization to reflect beliefs that the true coefficients may
be grouped into hierarchies, or display a spatial pattern such that βj is
likely to be close to βj+1.

Some care is needed in the application of the idea that small regres-
sion coefficients are more likely than large ones. First of all, it typically
does not make sense to apply this idea to the intercept, unless you hap-
pened to have some reason to think that the mean of Y should be zero.
Hence, the intercept is not included in the penalty; if it were, coefficient
estimates would not be invariant to changes of location.

Furthermore, the size of the regression coefficient depends on the
scale with which the associated feature is measured; depending on the
units xj is measured in, βj = 9.7× 104 might, in fact, be realistic. This
is a particular problem if different features are measured on different
scales, as the penalty would not have an equal effect on all coefficient
estimates. To avoid this issue and ensure invariance to scale, features
are usually standardized prior to model fitting to have mean zero and
standard deviation 1:

n∑
i=1

xij = 0

n∑
i=1

x2ij = n

for all j. This can be accomplished without any loss of generality, as any
location shifts for X are absorbed into the intercept and scale changes
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can be reversed after the model has been fit:

xijβj =
xij
a
aβj

= x̃ij β̃j ;

i.e., if we had to divide xj by a to standardize it, we simply divide the

transformed solution β̃j by a to obtain βj on the original scale.
Centering and scaling the explanatory variables has added benefits in

terms of computational savings and conceptual simplicity. The features
are now orthogonal to the intercept term, meaning that in the standard-
ized covariate space, β̂0 = ȳ regardless of what goes on in the rest of
the model. In other words, if we center y by subtracting off its mean,
we don’t even need to estimate β0. Also, standardization simplifies the
solutions; to illustrate with simple linear regression,

β̂0 = ȳ − β̂x̄

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

However, if we center and scale x and center y, then we get the much
simpler expression β̂0 = 0, β̂1 = x⊤y/n. As we will see throughout the
book, the clarity afforded by these simpler expressions makes it consid-
erably easier to see the effect of various penalties.

1.6.2 Ridge regression

As mentioned in the previous section, it is typically reasonable to assume
that small regression coefficients are more likely than large ones. In other
words, if two values of β̂ provided equally satisfactory fits to the data, the
estimate with the smaller values of β̂ would be considered more realistic.
To obtain penalized regression estimates according to this principle, we
should choose a penalty that discourages large regression coefficients.
A natural choice is to penalize the sum of squares of the regression
coefficients:

Pτ (β) =
1

2τ2

p∑
j=1

β2
j . (1.15)

Applying this penalty in the context of penalized regression is known as
ridge regression, and has a long history in statistics, dating back to 1970
(Hoerl and Kennard, 1970).

For linear regression, the ridge penalty is particularly attractive to
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work with because the maximum penalized likelihood estimator has a
simple closed form solution. The ridge regression objective function is

Q(β|X,y) = 1

2σ2

∑
i

(yi − x⊤
i β)

2 +
1

2τ2

p∑
j=1

β2
j . (1.16)

For the purposes of minimizing this objective function, it is often con-
venient to multiply the above objective function by the constant σ2/n;
as we will see throughout this book, doing so in penalized regression
problems often considerably simplifies the mathematical expressions in-
volved. Rewriting the above equation, we have

Q(β|X,y) = 1

2n

∑
i

(yi − x⊤
i β)

2 +
λ

2

p∑
j=1

β2
j , (1.17)

where λ = σ2/(nτ2). This objective function is differentiable, and it is
straightforward to show (Exercise 1.3) that its minimum occurs at

β̂ = (n−1X⊤X+ λI)−1n−1X⊤y, (1.18)

The solution is similar to the least squares solution (1.4), but with the
addition of a “ridge” down the diagonal of the matrix to be inverted.
Note that, after standardizing X and y and writing the objective func-
tion in terms of λ, the ridge solution is a relatively simple function of
the marginal regression solutions n−1X⊤y and the correlation matrix
n−1X⊤X.

As discussed in Section 1.3, the maximum likelihood estimator is not
always unique. If X is not full rank, X⊤X is not invertible and there
is no unique value of β that maximizes the likelihood. This problem
does not occur with ridge regression, however, as the following theorem
demonstrates.

Theorem 1.1. For any design matrix X, the quantity n−1X⊤X + λI
is always invertible provided that λ > 0; thus, there is always a unique
solution β̂.

The proof of Theorem 1.1 is left as Exercise 1.5.
To understand the effect of the ridge penalty on the estimator β̂,

it helps to consider the special case of an orthonormal design matrix
(X⊤X/n = I). In this case, we can factor out a (1+λ) term from (1.18)
and see that

β̂j =
β̂OLS
j

1 + λ
. (1.19)
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This illustrates the essential feature of ridge regression: shrinkage. The
primary effect of applying ridge penalty (1.15) is to shrink the estimates
toward zero. Doing so introduces bias but can considerably reduce the
variance of the estimate.

Example 1.3. The benefits of ridge regression are most striking in the
presence of multicollinearity. Consider the following very simple simu-
lated example:

> x1 <- rnorm(20)

> x2 <- rnorm(20, mean=x1, sd=.01)

> y <- rnorm(20, mean=3+x1+x2)

> fit <- lm(y~x1+x2)

> coef(fit)

(Intercept) x1 x2

3.021159 21.121729 -19.089170

In this case, although there are only two covariates, the strong cor-
relation between X1 and X2 causes a great deal of trouble for maximum
likelihood. Although in truth, β1 = β2 = 1, all pairs of (β1, β2) values
that add up to 2 yield virtually the same likelihood, including the max-
imum likelihood pair, (40,−38). The likelihood surface is very flat here
and there is a tremendous amount of uncertainty about β1 and β2.

When we introduce the added assumption that small coefficients are
more likely than large ones by using a ridge penalty, however, this un-
certainty is resolved. Using the ridge function provided by the hdrm
package to fit the ridge regression model, we obtain a solution that is
clearly much closer to the truth than the MLE:

> fit <- ridge(y~x1+x2)

> coef(fit, lambda=0.1)

(Intercept) x1 x2

3.0327231 0.9575176 0.9421784

Note that the syntax of ridge is similar to that of lm, although one
must specify a value of λ in the call to coef.

An obvious question is whether the ridge regression estimates are
systematically closer to the truth than MLEs are, or whether the above
example is a fluke. To address this question, let us first derive the bias
and variance of ridge regression, The variance of the ridge regression
estimate is

Var(β̂) = σ2

n W( 1nX
⊤X)W,

where W = ( 1nX
⊤X+ λI)−1. Meanwhile, the bias is

Bias(β̂) = −λWβ.
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Both bias and variance contribute to overall accuracy, as measured by
mean squared error (MSE):

MSE(β̂) = E∥β̂ − β∥2

=
∑
j

Var(β̂j) +
∑
j

Bias(β̂j)
2.

Theorem 1.2 (Existence Theorem). There always exists a value λ such
that

MSE
(
β̂λ

)
< MSE

(
β̂
OLS

)
.

This is a rather surprising result with somewhat radical implications:
despite the typically impressive theoretical properties of maximum likeli-
hood and linear regression, and even if the model we fit is exactly correct
and the outcome exactly follows the distribution we specify, we can al-
ways obtain a better estimator by shrinking the MLE towards zero.

0 2 4 6 8 10

0.00
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λ

MSE
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Bias

FIGURE 1.3
Variance, bias, and MSE of ridge regression. The horizontal gray line at
0.13 is the MSE of maximum likelihood (OLS).

The proof of Theorem 1.2 is left as Exercise 1.8, but the heuristic
idea of the proof can be seen in Figure 1.3. As shown in the figure,
the total variance (

∑
j Var(β̂j)) is a monotone decreasing sequence with

respect to λ, while the total squared bias (
∑

j Bias
2(β̂j)) is a monotone

increasing sequence with respect to λ. The MSE, on the other hand, is
not monotone but decreases up to an optimal value of λ, then increases.
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Because maximum likelihood is a special case of ridge regression with
λ = 0, proving Theorem 1.2 amounts to showing that the derivative of
the ridge MSE at 0 is negative, thus implying the existence of a region
(0, λ∗) over which ridge regression has a lower MSE than maximum
likelihood.

Figure 1.3 was generated from a design matrix containing two fea-
tures with a correlation of 0.5. The general contours of the figure are
representative of ridge regressions in general, although specific quanti-
ties, such as the extent to which ridge outperforms OLS and the range
over which this happens, depend on X. For example, in the simulated,
strongly correlated example from earlier in this section, ridge outper-
forms OLS (in terms of MSE) at λ = 1 by a factor of over 105 – certainly
not a fluke.

1.6.3 Bayesian interpretation

Bayesian inference provides a more formal justification for the proposal
of the penalty term. From a Bayesian perspective, one can think of the
penalty as arising from a formal prior distribution on the parameters.
Suppose that, given β, y has conditional density p(y|β). Let p(β) be the
prior for β. Then the posterior density is

p(β|y) = p(y|β)p(β)
p(y)

∝ p(y|β)p(β) (1.20)

where the proportionality constant is independent of β. Expressing
(1.20) on the log scale,

log p(β|y) = log p(y|β) + log p(β) + C,

where C is a constant with respect to β.
This is exactly the form of the objective function from (1.14). By op-

timizing this objective function, we are finding the mode of the posterior
distribution of β; this is known as the maximum a posteriori, or MAP,
estimate.

Specifically, suppose that we assume the prior

βj
⊥⊥∼ N(0, τ2).

The resulting log-posterior is exactly (1.16), up to a constant. Further-
more, because this prior is conjugate for linear regression (ignoring un-
certainty about σ2), the posterior distribution p(β|X,y) is also multi-
variate normal, and the ridge regression estimator (1.18) is the posterior
mean in addition to being the posterior mode. Finally, the regularization
parameter λ is the ratio of the prior precision (1/τ2) to the information
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(n/σ2). This is entirely in agreement with our earlier remarks that λ
quantifies the balance between fit (likelihood) and penalty (prior).

Thus, we arrive at the same estimator β̂ whether we view it as a mod-
ified maximum likelihood estimator or a Bayes estimator. In other re-
spects, however, the similarity between Bayesian and Frequentist breaks
down. Two aspects, in particular, are worthy of mention. First is the
inferential goal of constructing intervals for β and what properties such
intervals should have. Frequentist confidence intervals are required to
maintain a certain level of coverage for any fixed value of β. Bayesian
posterior intervals, on the other hand, may have much higher coverage
at some values of β than others. For example, the Bayes coverage for
a 95% posterior interval at βj ≈ 0 may be > 99%, but only ≈ 20%
for larger values of βj . The interval would nevertheless maintains 95%
coverage across a collection of βj values, integrated with respect to the
prior. These are two rather different requirements, and, in the context
of informative priors such as those in penalized regression, inherently
incompatible.

The other aspect in which a clear divide emerges between Bayes and
Frequentist perspectives is with regard to the specific value β = 0. From
a Bayesian perspective, the posterior probability that β = 0 is 0 because
its posterior distribution is continuous (unless one places a point mass
at zero; this is an entirely different class of models that lies outside the
scope of this book). From a Frequentist perspective, however, the notion
of testing whether β = 0 is still meaningful and indeed, often of interest
in an analysis.

The majority of research into penalized regression methods has fo-
cused on point estimation and its properties, so these inferential dif-
ferences between Bayesian and Frequentist perspectives are relatively
unexplored. Indeed, inferential methods of any kind for penalized re-
gression have been largely lacking, although this is starting to change.
We discuss various approaches to inference in Chapters 5-8. Throughout,
the perspective of this book is generally aligned with maximum likeli-
hood theory, although as we will see, the appearance of a penalty in
the likelihood somewhat blurs the lines between Bayes and Frequentist
ideas.

1.6.4 Selection of λ

In order to apply one of the model selection criteria introduced in Sec-
tion 1.5.2, we must first work out the degrees of freedom for ridge regres-
sion. Fortunately, this is straightforward for any linear fitting method.

Example 1.4. A model fitting method is said to linear if we can write
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ŷ = Sy, where S is an n × n matrix depending on the predictors and
certain tuning parameters. Suppose Var(y) = σ2I. The effective number
of parameters, or generalized degrees of freedom is

df = tr(Cov(ŷ,y))/σ2 = tr(S).

Note that ridge regression is a linear fitting method, with

S = X(X⊤X+ nλI)−1X⊤.

Thus,

df(λ) = tr(X(X⊤X+ nλI)−1X⊤) =

p∑
j=1

dj
dj + λ

.

where d1, . . . , dp are the eigenvalues of n−1X⊤X.

Using this result, we can use AIC, BIC, or some other information
criteria to choose λ. As Example 1.4 shows, the model selection involved
in penalized regression is continuous. As we change λ, we gradually in-
crease the complexity of the model, and small changes in λ result in
small changes in estimation. This is in sharp contrast to best subsets
model selection, where complexity is added by discrete jumps as we in-
troduce parameters, and adding just a single parameter can introduce
large changes in model estimates.

An alternative to information criteria is to leave observations out of
the fitting process and save them to use for evaluating predictive accu-
racy. In general, this involves cross-validation, which will be discussed in
greater detail in Section 2.5.2. However, for linear fitting methods, there
is an elegant closed-form solution to the leave-one-out cross-validation
error that does not require actually refitting the model. Let f̂(−i) denote
the fitted model with observation i left out. It can be shown (Exer-
cise 1.10) that

∑
i

{
yi − f̂(−i)(xi)

}2

=
∑
i

(
yi − f̂(xi)
1− sii

)2

, (1.21)

where sii is the ith diagonal element of S.

1.6.5 Case study: Air pollution data

To illustrate ridge regression in practice, we will now consider a study
designed to estimate the relationship between pollution and mortality
while adjusting for the potentially confounding effects of climate and so-
cioeconomic conditions. To quantify pollution, “relative pollution poten-
tial” was measured for three pollutants – hydrocarbons (HC), nitrogen
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oxides (NOX), and sulfur dioxide (SO2) – in 60 Standard Metropolitan
Statistical Areas in the United States between 1959-1961. The outcome
of interest is total age-adjusted mortality from all causes, in deaths per
100,000 population. In total, there are p = 15 explanatory variables:
the three pollution variables, 8 demographic/socioeconomic variables,
and 4 climate variables. Although few would consider p = 15 “high-
dimensional”, the full maximum likelihood model nevertheless struggles
with a sample size of just 60 and strong correlation among several vari-
ables, leaving it unable to provide a trustworthy answer to the primary
question of the relationship between pollution and mortality.

For the sake of easily comparing the effects of the various explanatory
variables, they have been standardized as described in Section 1.6.1. As
a result, the interpretation of β is the same for all variables, quantifying
the increase in deaths per 100,000 population that would be expected if
the variable were to increase by 1 standard deviation. The following code
uses the hdrm package to read in the data, perform this standardization,
fit, and plot the model:

loadData("pollution")

XX <- std(X)

fit <- ridge(XX, y)

plot(fit, xaxis="both")

Figure 1.4 shows the fit of the ridge regression model as a function of
λ. Such a plot was originally called the ridge trace; more recent authors
refer to it as the coefficient path. The most salient trend is the role of

λ as the regularization parameter: as λ → 0, β̂
ridge

→ β̂
OLS

, while as

λ→∞, β̂
ridge

→ 0.
It is particularly instructive to look at the coefficient paths of the

three pollution parameters, all of which are fairly highly correlated with
each other. At small λ values, the estimates indicate that NOX pollution
has a very strong harmful effect, while HC pollution has a very strong
protective effect. This result is surprising, and indeed rather difficult to
believe – increasing the amount of HC pollution should save 60 lives per
100,000? We are witnessing an instance of the phenomenon discussed
in Section 1.6.2. Judged purely by likelihood, it is plausible that one
type of pollution is highly detrimental and the other is highly beneficial
– the two types of pollution are highly correlated and as a result, the
likelihood is very flat along the HC-NOX axis. However, as we increase
the ridge penalty, we see that the estimated effects for these two types
of pollution quite rapidly drop to near zero.

A parallel story is told by examining the SO2 coefficient path. SO2

is correlated with HC and NOX (although not as highly correlated as
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FIGURE 1.4
Ridge regression estimates as a function of λ, which is presented on a log
scale. The SO2 path is the one that is similar to the “Precip” path until
λ ≈ 0.1, then decreases back towards β̂ ≈ 5. A vertical line is drawn at
the λ value that minimizes GCV.

HC and NOX are with each other), so its solution is affected by the
estimated effects for the other two pollutants. In particular, while most
of the other coefficient estimates increase monotonically as λ decreases
from ∞ to 0, the estimated effect of SO2 goes up, then decreases. As a
result, depending on the value of λ one chooses, SO2 pollution is either
far more important, or far less important, than HC and NOX pollution.

Figure 1.5 illustrates GCV and RSS for the pollution data, as a func-
tion of λ; these values are calculated and returned by ridge as fit$GCV
and fit$RSS, respectively. As we remarked earlier, RSS underestimates
the true prediction error for all values of λ, but the problem is most
severe for small λ values. Very large λ values are clearly not ideal, as
they produce quite poor predictions. The estimated prediction error falls
sharply until we reach λ ≈ 0.1, then starts to increase, much as we saw
in Figure 1.3. Note that we do not see this increase if we look at RSS, as
its increasing tendency to underestimate the prediction error dominates
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FIGURE 1.5
Fitting/prediction error, as estimated by GCV and underestimated by
the observed RSS.

the actual decline in accuracy. The value that minimizes GCV occurs at
λ = 0.1; this is illustrated by the vertical line in Figure 1.4.

TABLE 1.1
t-values for ridge regression
(λ = 0.1) and OLS.

Ridge OLS
NonWhite 3.90 3.36

SO2 2.72 0.58
Precip 2.47 2.06

Density 1.41 0.91
NOX 0.37 1.33

Humidity 0.32 0.09
Poor 0.21 -0.05

WhiteCol -0.38 -0.12
HC -0.42 -1.37

House -0.52 -1.53
Over65 -0.61 -1.07
Sound -0.86 -0.37
Educ -1.03 -1.44

JulyTemp -1.11 -1.63
JanTemp -1.77 -1.75
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Finally, Table 1.1 presents the statistical significance of each term in
the model, expressed as the ratio of the estimate to the standard error
(equivalently here, ratio of the posterior mean to the posterior standard
deviation), where we take the standard error to be the square root of
the diagonal elements of

∇2
βQ

−1 =
σ2

n
(n−1X⊤X+ λI)−1.

Calculating this quantity requires an estimate of σ2; a reasonable esti-
mator is σ̂2 = RSS/(n−df), by analogy with OLS regression. We refer to
this ratio as the t-value; one could obtain p-values by comparing against
the t distribution with n − df degrees of freedom, although we will be
content with the observation that |t| > 2 indicates βj = 0 is unlikely in
light of the data. Standard errors and t-values can be obtained from a
ridge fit via summary(fit).

Table 1.1 presents the t-values for both ridge regression and OLS
(maximum likelihood). As one might expect from Figure 1.4, SO2 is
much more significant under ridge regression than under maximum like-
lihood, with NOX and HC much less significant. Of particular note,
however, is the fact that several variables, such as NonWhite (percent-
age of population that is nonwhite) and Precip (mean annual precipi-
tation) are more significant at λ = 0.1 than at λ = 0. Thus, although
the estimates have been shrunken towards zero, the significance (i.e., the
evidence against β = 0) has actually increased.

1.7 Shrinkage and selection

The major limitation of ridge regression is the fact that all of its co-
efficients are nonzero. This poses two considerable problems for high-
dimensional regression. The first is that the solutions become very diffi-
cult to interpret – it is difficult to understand a model with hundreds or
thousands of parameters. The second reason is a computational one. In
high dimensions, ridge regression can be rather slow. The reason is that,
as we can see from equation (1.18), solving for β̂ involves inverting (or
at least factoring) a p× p matrix, which carries a heavy computational
burden when p is large.

Another concern with ridge regression is the heavy shrinkage towards
zero that it imposes. The squared term in the ridge penalty means that
large values of βj are judged to be extremely unlikely. In many situations,
we expect a large number of β coefficients to be zero or very close to
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zero, but the nonzero beta values to be somewhat large. In situations like
this, the ridge regression estimates exhibit a heavy bias towards zero.

It is desirable, then, to have models which allow for both shrinkage
and selection. In other words, we would like penalized regression methods
that allow us to retain the benefits of ridge regression while at the same
time selecting a subset of important variables. These are the sorts of
models we will consider throughout the remainder of this book. However,
it is worth remembering the lessons of ridge regression and the benefits
of shrinkage as we proceed.

1.8 Exercises

1.1. Increasing variance upon feature addition. Let X denote a matrix
with full column rank and x denote a new column that we are considering
adding to X to form X∗. Let v(X) denote the largest variance (i.e., the

largest diagonal element of the covariance matrix) of β̂, the OLS estimate
using X as a design matrix.

(a) Show that v(X∗) ≥ v(X).

(b) Under what circumstance does v(X∗) = v(X)?

Remark: This exercise examines the largest diagonal element of V(β̂).
The same phenomenon occurs if we were to consider instead the largest
eigenvalue of V(β̂), a consequence of the Cauchy interlacing eigenvalue
theorem.

1.2. Model selection using marginal regression. Carry out a simulation
study along the lines of Section 1.4, where y follows a normal distribu-
tion and the predictors follow independent uniform distributions. In this
study, however, use marginal regression to select the 5 most significant
variables to include in the OLS model. Use n = 50 and vary p along
the set {5, 50, 500, 5000}; repeat the procedure N = 1, 000 times (i.e.,
in the end, you will obtain 5, 000 coefficient estimates for each value of
p). Construct plots illustrating how MSE, PE, and confidence interval
coverage for the regression coefficients vary with p, and briefly comment
on these relationships. For MSE and coverage, leave the intercept out
of the calculation: the focus is on the coefficients to which a selection
procedure has been applied.

1.3. Ridge solution. Show that β̂ = (n−1X⊤X + λI)−1n−1X⊤y mini-
mizes the objective function given in (1.17).
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1.4. Standardization and the intercept. Suppose you have solved for the
ridge regression solutions β̃ on the standardized scale. The formula for
recovering β̂1, . . . , β̂p on the original scale is given in the text. What is

β̂0 on the original scale?

1.5. Uniqueness of ridge solution. Prove Theorem 1.1: Show that for any
design matrix X, the quantity n−1X⊤X+ λI is invertible if λ > 0.

1.6. Expected prediction error. Show the identity for the mean squared
prediction error (1.7).

1.7. Bayesian and frequentist intervals for ridge regression. Something
along these lines? Orthonormal case? General case?

1.8. Existence theorem. This problem consists of proving Theorem 1.2 in
two parts. Let QDQ⊤ denote the spectral decomposition of n−1X⊤X,
where D is the diagonal matrix of eigenvalues d1, . . . , dp.

(a) Show that

lim
λ→0+

∂

∂λ

∑
j

Var(β̂j) = −2
σ2

n

∑
j:dj>0

d−2
j .

(b) Show that

lim
λ→0+

∂

∂λ
Bias2(β̂) = 0;

you may wish to use the notation α = Q⊤β, as this quantity
appears frequently in the derivation.

Thus, as we introduce a penalty to the OLS estimates (λ = 0), the MSE
goes down, as it involves the sum of the terms in (a) and (b). Therefore,
there exists a range of values for which the MSE of ridge regression is
smaller than the MSE of OLS regression, regardless of X.

1.9. Pollution analysis without rescaling. Re-analyze the pollution-
mortality data in the original units (without rescaling). Show that the
model is the same, in the sense that the predicted value of y is identical
for a given value of λ, but that the actual β̂ values are different.

1.10. Leave-one-out cross-validation for linear fitting. Let Sy and S̃y
denote the fitted values of y for the full model and the model where
observation i has been left out, respectively. Suppose S̃ has the property
that s̃ij = sij(1 − sii)

−1 for i ̸= j and s̃ii = 0 (many linear fitting
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methods, including ridge regression, have this property). Show that for
any linear fitting method with this property,

∑
i

{
yi − f̂(−i)(xi)

}2

=
∑
i

(
yi − f̂(xi)

1− sii

)2

.

1.11. WHO pneumonia modeling. The presentation of an acutely ill
young infant presents health workers, especially those in developing
countries, with a very difficult problem. Serious infections are the main
cause of morbidity and mortality in infants under 3 months of age in
these countries, and diagnosing the severity of the illness is rather diffi-
cult.

To study this problem, the World Health Organization (WHO) col-
lected data on a number of readily accessible variables such as vital
signs, family history, and clinical observations resulting from physical
examination. The patients’ disease status was later determined based on
the course of the disease and various laboratory tests. The goal of the
study was to develop an early prediction rule for grading the severity of
the disease so that timely treatment could be delivered (and costly but
unnecessary treatments avoided).

The WHO study looked at several acute respiratory illnesses in sev-
eral countries; the data set whoari contains data on pneumonia from the
country Ethiopia. The outcome, a pneumonia score abbreviated pnsc,
was measured on the following scale:

1: No disease

2: Cold/cough

3: Pneumonia

4: Severe pneumonia

5: Life-threatening illness

The data, as well as descriptions of the variables, is available on-
line. Fit a regular OLS model and a ridge regression model (with an
appropriate choice of λ) to the data.

(a) Briefly, describe the variables that appear to be most important
(in terms of affecting the pneumonia prediction). Do they make
sense? Do OLS and ridge agree on which variables are most im-
portant?
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(b) In your opinion, which variable is more important in predicting
pneumonia, stridor or age? Why?

(c) With respect to statistical significance, are any variables consid-
erably more significant in one analysis than the other?

(d) Comment on the significance of age in the two models. Why do
you think age is more significant in the ridge regression analysis?

(e) Comment on the estimates you obtain from each model for the ef-
fect of sucking ability (absu) and drinking ability (afe); note that
higher scores for these two variables mean more severe problems
with sucking/feeding, not a greater ability to suck/feed. Which
estimates do you consider to be more reasonable? Why?





2

The Lasso

2.1 ℓ1-penalized regression

Section 1.6 introduced penalized regression, in which the usual least
squares objective function was modified to include a penalty in order to
stabilize the estimation and produce more reasonable solutions. In that
section, the penalty took the form of a sum of squares of the regres-
sion coefficients, yielding an approach known as ridge regression. In this
chapter, we continue to focus on the linear regression model

y = Xβ + ε, (2.1)

where ε ∼ N(0, σ2In), but instead penalize the absolute values of the
regression coefficients.

Consider the objective function

Q(β|X,y) = 1

2n
∥y −Xβ∥22 + λ∥β∥1, (2.2)

where ∥β∥1 =
∑

j |βj | denotes the ℓ1 norm of the regression coefficients.
This is similar to ridge regression (1.17), but with an ℓ1 norm ∥β∥1 re-
placing the ℓ2 norm ∥β∥22 in the penalty term (Figure 2.1). Estimates of
β are obtained by minimizing the above function for a given value of λ,
yielding β̂(λ). In the context of regression analysis, this approach was
originally proposed by Tibshirani, who called it the least absolute shrink-
age and selection operator, or lasso. In the signal processing literature,
the approach is known as basis pursuit.

Its name captures the essence of what the lasso penalty accomplishes:
shrinkage and selection. Chapter 1 illustrated the way in which ridge
regression produces estimates which are shrunken toward zero. This
shrinkage property is shared by the lasso: both approaches penalize large
values of the regression coefficients. In ridge regression, however, the esti-
mates were dense: all predictors were present in the model with nonzero
coefficient estimates. The lasso, on the other hand, produces sparse so-
lutions: some coefficient estimates are exactly zero, effectively removing
those predictors from the model.

35
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Sparsity has two very attractive properties. First, as we will see in
Section 2.4, algorithms which take advantage of sparsity can scale up
very efficiently, offering considerable computational advantages in high
dimensional regression. The second advantage is interpretability. For the
example in Section 1.6.5, it was not difficult to display and consider all 15
predictors. This is no longer the case when the model contains hundreds
or thousands of predictors. In these high-dimensional settings, sparsity
offers a very helpful simplification of the model by allowing us to focus
only on the predictors with nonzero coefficient estimates.

β

P
(β

)

β

P
'(β

)

0

0

λ

Lasso Ridge

FIGURE 2.1
Penalty function (left) and its derivative (right) for the lasso and ridge
penalties.

2.1.1 Karush-Kuhn-Tucker conditions for the lasso

How does such a seemingly simple change (ℓ1 instead of ℓ2 penalty) re-
sult in sparse solutions? We can shed some light on this question by
considering the derivative of objective function (2.2). In classical sta-
tistical theory, the derivative of the log-likelihood function is called the
score function, and maximum likelihood estimators are found by setting
this derivative equal to zero, thus yielding the likelihood equations (or
score equations):

0 =
∂

∂θ
L(θ), (2.3)

where L, defined in (1.12), denotes the log-likelihood.
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Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions like (1.14), yielding the penalized score
function. For ridge regression, the penalized likelihood is everywhere
differentiable, and the extension to penalized score equations is straight-
forward. For the lasso, and for the other penalties we will consider in
this book, the penalized likelihood is not differentiable (specifically, not
differentiable at zero). We can extend the idea of (2.3) to nondifferen-
tiable functions with subdifferentials, which expand the notion of the
derivative to include sets of tangent lines at the nondifferentiable points
of a function; see Section 2.10 for a formal description of this concept.
Letting ∂Q(θ) denote the subdifferential of the function Q, the penalized
likelihood equations (or penalized score equations) are:

0 ∈ ∂Q(θ). (2.4)

In the optimization literature, these equations are known as the Karush-
Kuhn-Tucker (KKT) conditions. For convex optimization problems such
as the lasso, the KKT conditions are both necessary and sufficient to
characterize the solution.

Evaluating ∂Q(β) for the lasso, we find that β̂(λ) is a global mini-
mizer of (2.2) if and only if it satisfies the KKT conditions{

xT
j (y −Xβ̂)/n = λsign(β̂j), β̂j ̸= 0

|xT
j (y −Xβ̂)/n| ≤ λ, β̂j = 0.

(2.5)

In other words, the correlation between a predictor and the residuals,
xT
j (y − Xβ̂)/n, must exceed a certain minimum threshold λ before it

is included in the model. When this correlation is below λ, β̂j = 0.
It is instructive to compare these equations to Figure 2.1. There, we
see that the rate of penalization P ′(|β|) is constant for the lasso, and
in particular is λ at β = 0. For the ridge penalty, on the other hand,
P ′(|β|) drops to zero as β → 0: predictors enter the model no matter
how small their correlation with the residual is. In addition, we can see
from the plot that ridge regression will, compared with the lasso, shrink
small regression coefficients less and large regression coefficients more.

The KKT conditions can also be expressed as a single equation:

− 1

n
XT (y −Xβ̂) + λŝ = 0, (2.6)

where ŝ = (ŝ1, . . . , ŝp)
T , with ŝj = 1 if β̂j > 0, ŝj = −1 if β̂j < 0 and

ŝj ∈ [−1, 1] if β̂j = 0. Here the term ŝ is the subdifferential of ∥β∥1
evaluated at β̂.
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If we set

λ = λmax ≡ max
1≤j≤p

|xT
j y|/n, (2.7)

then β̂ = 0 satisfies (2.5). That is, for this λmax, we have β̂(λmax) = 0.

Clearly, for any λ > λmax, we also have β̂(λ) = 0. This means λmax is the
smallest value of λ that makes the solution zero. On the other hand, if
we set λ = 0, then (2.5) becomes xT

j (y−Xβ̂) = 0, j = 1, . . . , p. Putting
these equations together in matrix notation yields the normal equation
for least squaresXT (y−Xβ̂) = 0. As we have mentioned before, if p > n,
there are infinitely many solutions to this equation. Thus, computing the
solution path starts at λmax and continues until λ = 0 if X is full rank.
If X is not full rank, the lasso solution will fail to be unique for λ values
below some point λmin; more details regarding this statement are given
in Section 2.1.2.

2.1.2 ∗Uniqueness of lasso solution

The lasso criterion is convex, but not strictly convex if XTX does not
have a full rank, which is always the case in p ≥ n settings. In such
settings, the lasso solution will be unique for some, but not all, values
of λ, as the following simple example illustrates.

Example 2.1. Suppose n = 2 and p = 2, and suppose the observations
are (y1, x11, x12) = (1, 1, 1) and (y2, x21, x22) = (−1,−1,−1). The lasso
criterion for these observations is

1

2
(1− β1 − β2)2 + λ(|β1|+ |β2|). (2.8)

Then the solutions are{
(β̂1, β̂2) = (0, 0) if λ ≥ 1,

(β̂1, β̂2) ∈ {β1 + β2 = 1− λ, β1 ≥ 0, β2 ≥ 0} if 0 ≤ λ < 1.

The verification of this is left as Exercise 2.1. So in this example, for
λ ≥ 1, there is a single unique solution, while for 0 ≤ λ < 1 there
are infinitely many solutions, including two sparse solutions (β̂1, β̂2) =
(0, 1− λ) or (1− λ, 0).

When is a lasso solution unique? Let β̂ and β̂
∗
be two solutions, and

let d = β̂ − β̂
∗
. Then

Xd = 0. (2.9)
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Let V (β̂) be the set of v ∈ Rp of the form vj = 1 if β̂j > 0, vj = −1
if β̂j < 0 and vj equals either −1 or 1 if β̂j = 0. Suppose β̂ has m zero

entries, then V (β̂) has k = 2m such vectors, so we can write V (β̂) =
{v1, . . . ,vk}. The difference d must satisfy

dTv ≤ 0 for all v ∈ V (β̂). (2.10)

If this is not true, that is, dTv > 0 for some v ∈ V (β̂), then for any

0 < ρ ≤ 1, ∥β̂+ ρd∥1 ≥ (β̂+ ρd)Tv = ∥β̂∥+ ρdTv > ∥β̂∥. But this is a
contradiction since ∥β̂ + ρd∥1 = ∥β̂∥1 for all 0 ≤ ρ ≤ 1.

So (2.9) and (2.10) imply that β̂ is unique if and only if there does not
exist any non-zero vector b ∈ Rp satisfying both Xb = 0 and bTv ≤ 0
for every v ∈ V (β̂). This can be stated as C(β̂) ∩ N (X) = {0}, where
C(β̂) = {b : bTv ≤ 0, for every v ∈ V (β̂}.

A simpler way to characterize the uniqueness of β̂ is as follows. Note
that (2.9) implies XT r1 = XT r2. Let β̂ = {k1, . . . , kp} be the set of

indices for which |(XT r)kj
| = ∥XT r∥∞ for j = 1, . . . , p. If β̂ is a solution

then β̂j = 0 for j ̸∈ ν, since every solution must satisfy (2.5). Therefore,

if β̂ and β̂
∗
are solutions, dj = 0 for all j ̸∈ β̂.

Let V be the k × p matrix whose ith row is vT
i in V (β̂), let Xβ̂ be

the n×p matrix whose jth column is the kjth column of X, j = 1, . . . , p,
and let Vβ̂ be the corresponding submatrix of V. The above discussion

shows that β̂ is a unique solution if and only if there does not exist any
b ̸= 0 satisfying

Vβ̂b ≤ 0 and Xβ̂b = 0.

Is a lasso solution always sparse? In general, the answer is no. For
instance, in Example 2.1, there are infinitely many non-sparse solutions.
But there exists an upper bound on the number of nonzero coefficients
of a particular kind of solutions – a regular solution. A lasso solution is
said to be regular if N (V) ∩ N (X) = {0}. If p ≥ n and β̂ is a regular

solution, then β̂ has at most n− 1 nonzero coefficients.

2.2 Soft thresholding

Consider the case where the design matrix X is orthonormal: XTX/n =
I. In this case, the KKT conditions are separable, and we can estimate βj
without having to consider the other covariates. Although this is clearly
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a special case and rarely met in high-dimensional regression problems, it
presents the distinct advantage of offering a closed-form solution. This
solution will not only offer insights into how the lasso works, but we will
also use this closed-form solution as the building block of the coordinate
descent algorithm presented in Section 2.4.

The OLS estimator in the orthonormal case is given by β̂OLS =
(xTx)−1xTy = xTy/n, since xTx = n; in this section we will drop
the j subscript on β and x for the sake of simplicity. The lasso estimate
is

β̂(λ) = argmin
β∈R

1

2n
∥y − xβ∥22 + λ|β|. (2.11)

Since ∥y − xβ∥2/n = (β̂OLS − β)2 + yTy/n− β̂2
OLS, we have

β̂(λ) = argmin
β∈R

1

2
(β̂OLS − β)2 + λ|β|. (2.12)

Some calculation (Exercise 2.5) shows that

β̂(λ) =


β̂OLS − λ, if β̂OLS > λ,

0, if |β̂OLS| ≤ λ,
β̂OLS + λ, if β̂OLS < −λ.

(2.13)

This can be written more compactly as

β̂(λ) = S(β̂OLS|λ),

where

S(z|λ) = sign(z)(|z| − λ)+, (2.14)

where x+ = x for x > 0 and 0 otherwise. The S(·|λ) function is called
the soft thresholding operator. This was originally proposed by Donoho
and Johnstone (1994) for soft thresholding of wavelets coefficients in the
context of nonparametric regression. By comparison, the “hard” thresh-
olding operator is H(z, λ) = zI{|z| > λ}, where I(S) is the indicator
function for set S.

The hard and soft thresholding operators are plotted in Figure 2.2. As
the figure shows, the hard thresholding operator is discontinuous, with
β̂(λ) jumping from 0 to β̂OLS as soon as β̂OLS cross the threshold. The
soft thresholding operator, on the other hand, is a continuous function
of both λ and z; hence their names.

From expression (2.13), we can see that the lasso has a positive proba-
bility of yielding an estimate of exactly 0 – in other words, of producing
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FIGURE 2.2
The soft and hard thresholding operators.

a sparse solution. Specifically, the probability of dropping x from the

model is P(|β̂OLS| ≤ λ). Since the error terms satisfy ϵi
⊥⊥∼ N(0, σ2), we

have β̂OLS ∼ N(β, σ2/n). Thus,

P(β̂(λ) = 0) = Φ
( λ− β
σ/
√
n

)
− Φ

(−λ− β
σ/
√
n

)
,

where Φ is the cumulative distribution function for a standard normal
random variable.

The sampling distribution of β̂ is plotted in Figure 2.3 for two cases,
β = 0 and β = 1. There are several interesting observations to be drawn
from the figure. The most notable is the fact that this sampling distri-
bution is not regular: the distribution is mixed, with some portion con-
tinuously distributed and the rest concentrated at a point mass at zero.
Furthermore, the continuous portion of the distribution is not normally
distributed, although the distribution in the β = 1 is approximately nor-
mal. In the β = 0 case, there is a high probability of β̂ = 0 and small
probability that β̂ will be take on a value near zero. In the β = 1 case,
there is a high probability that β̂ will be positive, and only a small prob-
ability that β̂ = 0. It is worth noting, however, that the positive density
of β̂ is not centered at β = 1, but instead at β − λ = 0.5 due to shrink-
age. In all of these ways, the distribution of β̂ is substantially different
from the distribution of β̂OLS , which creates challenges for carrying out
inference using the lasso; we will return to the problem of inference in
Chapters 5-8.
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FIGURE 2.3
Sampling distribution of the lasso estimator β̂ in the orthonormal case.
Here, σ = 1, n = 10, and λ = 1/2.

2.3 Lasso vs. forward selection

The lasso can be thought of as performing a multivariate version of
soft thresholding. In the same sense, the multivariate version of hard
thresholding is ℓ0 penalization:

argmin
β∈Rp

1

2n
∥y −Xβ∥2 + λ∥β∥0, (2.15)

where ∥β∥0 =
∑

j I(βj ̸= 0). For the orthonormal case X⊤X/n = I, the

solution to (2.15) is given by β̂j = H(β̂OLS
j ,

√
2λ). Estimating β in this

manner is equivalent to the subset selection of Section 1.4; many impor-
tant model selection criteria, including AIC and BIC, can be considered
special cases of this formulation taking different λ values.

Thus, the lasso can be thought of as a “soft” relaxation of ℓ0 penalized
regression. This relaxation has two important benefits. First, estimates
are continuous with respect to both λ and the data. Second, the lasso ob-
jective function is convex, which offers considerable advantages in terms
of optimization. Namely, one can solve for lasso estimates using gradient-
based methods without having to be concerned with convergence to local
minima. In contrast, the computation in ℓ0 penalized problems is com-
binatorial and not feasible when p is large. In fact, solving (2.15) is an
NP-hard computational problem (Natarajan, 1995). To get around this
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difficulty, a common approach to solving (2.15) is to employ the greedy
algorithm known as forward selection that we considered in Section 1.4.
Like forward selection, the lasso will allow more variables to enter the
model as λ is lowered, but as we will see, performs a continuous version
of variable selection and is less greedy about allowing selected variables
into the model.

Let us consider the regression paths of the lasso and forward selection
(ℓ1 and ℓ0 penalized regression, respectively) as we lower λ, starting at

λmax where β̂ = 0. As λ is lowered below λmax, both approaches find
the predictor most highly correlated with the response (let xj denote

this predictor), and set β̂j ̸= 0. With forward selection, the estimate

jumps from β̂j = 0 all the way to β̂j = xT
j y/n. The lasso solution β̂j = 0

heads in this direction as well, but proceeds more cautiously, gradually
advancing towards β̂j = xT

j y/n as we lower λ.

x1

x2

●

y
●

y1

y2

●

●

FIGURE 2.4
Geometry of the lasso path through the x1, x2 plane. Here, ȳ1 is the
projection of y onto x1 and ȳ2 is the projection of y onto the column
space of (x1,x2). The lasso path is shown in blue.

The lasso solution proceeds in this manner until it reaches the
point that a new predictor, xk, is equally correlated with the residual
r(λ) = y−Xβ̂(λ). From this point, the lasso solution will contain both
x1 and x2, and proceed in the direction that is equiangular between the
two predictors. The geometry of the lasso path is depicted in Figure 2.4.
In the figure, forward selection takes large, discontinuous jumps from ȳ1

to ȳ2, while the lasso takes a smooth, continuous path towards ȳ2. Fur-
thermore, the lasso always proceeds in a direction such that every active
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predictor (i.e., one with β̂j ̸= 0) is equally correlated with the residual
r(λ). This property, that all active predictors are equally correlated with
the residual, can also been seen from the KKT conditions (2.5).

The geometry of the lasso depicted in Figure 2.4 clearly illustrates
the “greediness” of forward selection. By continuing along the path from
y to ȳ1 past the point of equal correlation, forward selection continues to
exclude x2 from the model even when x2 is more closely correlated with
the residuals than x1. The lasso, meanwhile, allows the predictors most
highly correlated with the residuals into the model, but only gradually,
up to the point that the next predictor is equally useful in explaining
the outcome.

This geometric approach to the lasso not only lends insight to the
method and its relationship to forward selection, it can also be used
as an algorithm. The approach, known as least angle regression, or the
LARS algorithm, offers an elegant way to solve for β̂ in lasso estimation.
In the following section, we discuss a less beautiful but simpler and more
flexible alternative approach known as coordinate descent algorithms for
fitting lasso models.

2.4 The coordinate descent algorithm

A simple and effective algorithm for computing the lasso solutions is the
coordinate descent algorithm. This algorithm optimizes a target function
with respect to a single parameter at a time, iteratively cycling through
all parameters until convergence is reached. It is particularly suitable for
problems that have a simple closed form solution in a single dimension
but lack one in higher dimensions.

The idea behind coordinate descent is to minimize Q with respect
to βj , while temporarily treating the other regression coefficients β−j as
fixed. Rewriting the objective function (2.2), we have

Q(βj |β−j) =
1

2n

n∑
i=1

(yi −
∑
k ̸=j

xikβk − xijβj)2 + λ|βj |+Constant.
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Let

ỹij =
∑
k ̸=j

xikβ̃k,

r̃ij = yi − ỹij , and

z̃j = n−1
n∑

i=1

xij r̃ij ,

where {r̃ij}ni=1 are the partial residuals with respect to the jth predictor,
and z̃j is the OLS estimator based on {r̃ij , xij}ni=1. Some algebra shows
that

Q(βj |β̃−j) =
1

2
(βj − z̃j)2 + λ|βj |+Constant,

just as we obtained in (2.12). Thus, letting β̃j denote the minimizer of

Q(βj |β̃−j), (2.13) and (2.14) imply that

β̃j = S(z̃j |λ). (2.16)

Given the current value β̃(s) in the sth iteration for s = 0, 1 . . ., the
algorithm for computing β̂ is given in Algorithm 2.1. In the algorithm,

Algorithm 2.1 Coordinate descent algorithm for the lasso

repeat
for j = 1, 2, . . . , p

z̃j = n−1
∑n

i=1 xijri + β̃
(s)
j

β̃
(s+1)
j ← S(z̃j |λ)
ri ← ri − (β̃

(s+1)
j − β̃(s)

j )xij for all i.

until convergence

z̃j represents the unpenalized solution for β̃j given β̃−j , and can be
expressed in several equivalent ways:

z̃j = n−1
n∑

i=1

xij r̃ij

= n−1
n∑

i=1

xij

(
yi − ỹi + xij β̃

(s)
j

)
= n−1

n∑
i=1

xijri + β̃
(s)
j ,
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where ỹi =
∑p

j=1 xij β̃
(s)
j is the current fitted value for observation i and

ri = yi− ỹi is the current residual. The last expression for z̃j is the most
efficient computationally, as it allows one to calculate z̃j without calcu-
lating the {r̃ij}ni=1 values. The last step in Algorithm 2.1 ensures that
{ri} always hold the current values of the residuals, which is essential as
{ri} will be used again in the first step of the next iteration.

The coordinate descent algorithm has the potential to be quite effi-
cient, in that the three steps in Algorithm 2.1 require only O(2n) oper-
ations, meaning that one full iteration can be completed at a computa-
tional cost of O(2np) operations – linear in both n and p.

Numerical analysis of optimization problems of the form (1.14) has
shown that coordinate descent algorithms converge to a stationary
point provided that the loss function L(β|X,y) is differentiable and
the penalty function Pλ(β) is separable, meaning that it can be written
as Pλ(β) =

∑
j Pλ(βj). Lasso-penalized linear regression satisfies both

of these criteria. Furthermore, because the lasso objective is a convex

function, the sequence of the objective functions {Q(β̃
(s)

)} converges to
the global minimum. However, because the lasso objective is not strictly
convex, there may be multiple solutions (Section 2.1.2). In such situa-
tions, there is no guarantee that the coordinate descent algorithm will
converge to a regular solution.

2.4.1 Pathwise optimization

As we saw in Section 1.6, we are typically interested in determining β̂ for
a range of values of λ, thereby obtaining the coefficient path. In applying
the coordinate descent algorithm to determine the lasso path, an efficient
strategy is to compute solutions for decreasing values of λ, starting at
λmax = max1≤j≤p |xT

j y|/n, the point at which all coefficients are 0. By
continuing along a decreasing grid of λ values, we can use the solutions
β̂(λk) as initial values when solving for β̂(λk+1). Because the coefficient
path is continuous, doing this automatically provides good initial values
for the iterative optimization procedure. This strategy, known as employ-
ing “warm starts,” substantially improves the efficiency of the algorithm,
as the initial values are always fairly close to the final solution.

We proceed in this manner down to a minimum value λmin. If p < n
and the design matrix is full rank, λmin can be 0. In other settings, the
model may become excessively large or cease to be identifiable for small
λ; in such cases, a value such as λmin = 0.01λmax may be used. Because
lasso solutions change more rapidly at low values of λ, the grid of λ
values is typically chosen to be uniformly spaced on the log scale over
the interval [λmax, λmin].
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Choosing λmin is often a practical consideration in high-dimensional
problems; because coordinate descent algorithms take advantage of spar-
sity, the vast majority of the computation time occurs when λ is small.
This can be very inefficient if the interesting portion of the solution path
lies between λmax and 0.4λmax, which it often does when p≫ n.

To illustrate the coefficient path of the lasso, we fit a lasso model to
the pollution data from Section 1.6.5. The coordinate descent algorithm
described in this section is implemented in the R package glmnet. The
basic usage of glmnet is straightforward:

library(glmnet)

fit <- glmnet(X, y)

plot(fit)
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FIGURE 2.5
Coefficient path for the lasso as a function of λ, which is presented on a
log scale. The SO2 path is the one that is similar to the “Precip” path
until λ ≈ 0.4, then decreases back towards β̂ ≈ 5. A vertical line is drawn
at the λ value that minimizes the cross-validation error.

The above code will solve for and then plot the solution path of
the lasso. The (slightly reformatted) plot is presented in Figure 2.5. It
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is highly instructive to compare this plot with the one in Figure 1.4.
There are many similarities: in both plots, the estimates are β̂ = 0 on
the left side and β̂ = β̂OLS on the right side; both display a rather
striking pattern for the pollutants HC and NOX as λ changes; and both
involve the coefficient for SO2 increasing, then decreasing as λ decreases.
However, there are many important differences as well. Most notably, the
lasso solution path contains many exact zeros, with coefficients entering
the model one by one as λ decreases. For example, at λ = 1.84, the
value which minimizes the cross-validation error (Section 2.5.2), there are
nine variables in the model. Notably, this does not include HC or NOX,
the variables with the largest OLS regression coefficients. As with ridge
regression, by incorporating an assumption that regression coefficients
are likely to be small, the lasso avoids the questionable conclusion that
increasing the amount of hydrocarbon pollution should save dozens of
lives per year.

Another, more subtle difference between the lasso and ridge coeffi-
cient paths is that with the lasso, coefficients get larger faster than with
ridge regression. For example, at λ = 1.84, β̂NonWhite = 35.6 despite the
fact that many other coefficients are either zero or very close to zero.
This is a consequence of the fact that ridge regression applies heavier
shrinkage than does the lasso.

2.5 Selection of λ

2.5.1 Information criteria

The use of information criteria for selecting λ was discussed in Sec-
tion 1.5.2. The fitted values for models considered there were linear func-
tions of the outcome variable: µ̂ = Sy. For such models the degrees of
freedom for the fit was shown to be tr(S).

The fitted values for the lasso, however, are not linear functions of
y and there is no exact, closed form solution to Cov(y, µ̂). A natural

proposal would be to use df(λ) = ∥β̂(λ)∥0, the number of nonzero coef-
ficients. On the one hand, the nonzero coefficients were not prespecified
– rather, they were selected from a larger pool of p coefficients because
they exhibited the best correlation with the outcome. From this perspec-
tive, ∥β̂(λ)∥0 would seem to underestimate the true degrees of freedom.
On the other hand, shrinkage reduces the degrees of freedom in an es-
timator; for example, with ridge regression there are always p nonzero
parameters, but there can be far less than p degrees of freedom, depend-
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ing on λ. From this perspective, ∥β̂(λ)∥0 might seem to overestimate the
true degrees of freedom.

Surprisingly, as it turns out, these two factors exactly cancel and

df(λ) = ∥β̂(λ)∥0

can be shown to be an unbiased estimate of the lasso degrees of freedom.
The derivation is this result is discussed in Exercise 2.9). With this
estimate, we can use the information criteria presented in Section 1.5.2
for the purposes of selecting λ. For example,

BIC = 2L(β̂(λ)|X,y) + df(λ) log(n).

To illustrate the application of AIC and BIC to lasso models, we
use the ncvreg package to fit the lasso path. The primary purpose of
the ncvreg package is to provide penalties other than the lasso, and
will be covered in more detail in Chapter 3. However, it also supplies a
penalty="lasso" option and has some additional features that glmnet
does not, such as providing a logLik method so that it can be used with
R’s AIC and BIC functions. The syntax of ncvreg is very similar to its
glmnet equivalent:

fit <- ncvreg(X, y, penalty="lasso")

ll <- log(fit$lambda)

IC <- cbind(AIC(fit), BIC(fit))

matplot(ll, IC, xlim=rev(range(ll)))

abline(v=ll[apply(IC, 2, which.min)])

A plot of AIC and BIC as a function of λ is shown in Figure 2.7 for
the pollution data analyzed in Section 2.4.1. Here, λ̂AIC = 2.27, while
λ̂BIC = 4.90. BIC applies a stronger penalty for overfitting, and as we
would expect, chooses a smaller, more parsimonious model than does
AIC.

The main advantage of AIC and BIC is that they are computationally
convenient: they can be calculated using the fit of lasso model at very
little computational cost. The primary disadvantage is that both AIC
and BIC rely on a number of asymptotic approximations that can be
quite inaccurate for high-dimensional data, especially when models are
nearly saturated. Cross-validation, which we describe in the next section,
is more reliable in general, although it comes at an added computation
cost. In the low-dimensional pollution data example, both AIC and BIC
give reasonable results and more or less agree with cross-validation, but
as we will see in Section 2.7, this is not always the case.
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FIGURE 2.6
AIC, BIC for the lasso model fit to the pollution data. Dotted vertical
lines are drawn at the values that minimize each information criterion.

2.5.2 Cross-validation

As discussed in Section 1.6.4, a reasonable approach to selecting λ in an
objective manner is to choose the value of λ that yields a model with
the greatest predictive power. The extent to which information criteria
such as those presented in 2.5.1 accurately answer this question in high-
dimensional settings is not always clear. For this reason, a more direct,
empirical measurement of predictive accuracy is often preferable.

One idea is to split the data set into two fractions, a training set and
test set, using one portion to estimate β̂ (i.e., “train” the model) and the

other to evaluate how well Xβ̂ predicts the observations in the second
portion (i.e., “test” the model). The problem with this solution is that we
rarely have so much data that we can freely part with half of it solely for
the purpose of choosing λ. To finesse this problem, cross-validation splits
the data into V folds, fits the data on V − 1 of the folds, and evaluates
prediction error on the fold that was left out. Specifically, the procedure
works as follows for the lasso (or any other penalized regression method).

1. Specify a grid of regularization values Λ = {λ1, . . . , λV }.

2. Divide the data into V roughly equal parts D1, . . . , DV . Common
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choices for V are 5, 10, or n (also known as leave-one-out cross-
validation).

3. For each v = 1, . . . , V , compute the lasso solution path using
the observations in {Du, u ̸= v}. Denote the resulting solutions

β̂−v(λk).

4. For each λ ∈ Λ, compute the mean squared prediction error

MSPEv(λ) =
1

nv

∑
i∈Dv

(yi − xT
i β̂−v(λ))

2,

where nv is the number of observations inDv, as well as the overall
cross-validation error

CV(λ) =
1

V

V∑
v=1

MSPEv(λ). (2.17)

5. Choose λ̂ = argminλ∈Λ CV(λ).

Then β̂ ≡ β̂(λ̂) is taken as the estimate of the regression coefficients.
In the above procedure, MSPEv(λ) is the mean squared prediction

error for the model based on the training data {Du, u ̸= v} in predicting
the response variables in Dv, while CV(λ) is an estimate of the expected
mean squared prediction error defined in (1.7).

Regardless of the number of cross-validation folds, each observation
in the data appears exactly once in a test set. Let µ̂i(λ) = xT

i β̂u(i)(λ)
denote the predicted value of yi based on the data set Du not containing
observation i (i.e., µ̂i(λ) is an out-of-sample prediction for yi). The mean
of {yi − µ̂i(λ)}ni=1 is equal to CV(λ). Its variability, however, is useful
for estimating the accuracy with which E(MSPE(λ)) is estimated. Let
SDCV(λ) denote the sample standard deviation of the {yi − µ̂i(λ)}ni=1

values. The standard error of the estimate (2.17) is therefore

SECV(λ) =
SDCV(λ)√

n
.

The standard error, in turn, can be used to construct approximate con-
fidence intervals for CV(λ):

[CV(λ)− SECV(λ),CV(λ) + SECV(λ)]. (2.18)

Using the normal distribution to approximate the sampling distribu-
tion, this procedure will produce a 68% confidence interal for CV(λ).
A more traditional 95% confidence interval could of course be created
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FIGURE 2.7
CV plot for lasso.

by adding/subtracting 1.96 standard errors instead, although there is
no clear rationale for any particular confidence level in the context of
selecting a regularization parameter.

A plot of the cross-validation error CV(λ) as well as the confidence
interval (2.18) is given in Figure 2.7 for the pollution data analyzed in
Section 2.4.1. The cross-validation procedure described in this section,
along with the estimates of CV(λ) and its standard error, are imple-
mented in glmnet and can be carried out using the following code, which
produces Figure 2.7:

cvfit <- cv.glmnet(X, y)

plot(cvfit)

By default, cv.glmnet uses V = 10 folds, but this can be changed
through the nfolds option.

For every λ ∈ Λ, the red dot represents CV(λ), while the gray er-
ror bars depict interval (2.18). As mentioned in Section 2.4.1, the value
λ = 1.84 minimizes the cross-validation error. However, as the confi-
dence intervals show, there is substantial uncertainty about this mini-
mum value. A fairly wide range of λ values (λ ∈ [0.12, 9.83]) yield CV(λ)
estimates falling within ±1SECV of the minimum. As an alternative to
selecting the value of λ that minimizes CV(λ), some authors have sug-
gested selecting the largest value of λ that falls within this interval (i.e.,



The Lasso 53

λ̂ = 9.83 in this example). The idea here is to err on the side of be-
ing more conservative, selecting the smallest/most parsimonious model
whose prediction performance is not significantly worse than that of the
apparent best model. The dashed vertical lines in Figure 2.7 illustrate
these two choices: λ̂ = 1.84, minimizing CV(λ), and λ̂ = 9.83, the more
parsimonious choice (5 nonzero coefficients, as opposed to 9).

The general contours of Figure 2.7 are similar to those of Figure 1.5:
very large values of λ shrink all the coefficients to zero and result in
underfitting. Small values (under λ = 1), however, are also not ideal – as
we decrease λ below 1, the model is overfit and prediction performance
again suffers.

2.6 Estimation of σ2

2.6.1 Plug-in and cross-validation estimators

In ordinary least squares regression, the standard estimator of σ2 is

σ̂2
OLS =

RSS

n− df
, (2.19)

where RSS =
∑n

i=1(yi− µ̂i)
2 denotes the residual sum of squares and df

is the rank of X. For the lasso, an obvious plug-in alternative to (2.19)
is

σ̂2
P =

RSS(λ)

n− df(λ)
, (2.20)

where RSS(λ) =
∑n

i=1{yi − µ̂i(λ)}2.
Estimator (2.20) is based on the observed fit of the model and makes

no adjustment for overfitting. As a result, it tends to underestimate σ2,
particularly for low values of λ. An alternative approach is to use an
estimate of the out-of-sample prediction error in place of the observed
RSS(λ). A natural choice here is the cross-validation estimate: we denote
the cross-validation based variance estimate σ̂2

CV = CV(λ).
Other, more computationally intensive methods have also been pro-

posed involving sample splitting. Consider randomly partitioning the
dataset into two sets D1 = (y(1),X(1)) and D2 = (y(2),X(2)) with sizes
n1 and n2, respectively, where n1 +n2 = n. The idea behind the sample
splitting is to use the lasso on D1 for the purposes of variable selection,
and then fit an OLS model to D2 using the selected variables for the
purposes of estimating σ2. Let ŝ1 be the set of predictors selected based
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on applying the lasso to D1 and RSS(D2, ŝ1) denote the residual sum
of squares from the OLS model fit to D2 using only the variables in ŝ1.
Then

σ̂2
1 =

RSS(D2, ŝ1)

n2 − |ŝ1|+ 1

is the OLS estimate of the residual variance based on data D2 and vari-
ables ŝ1. The same procedure can be applied in the opposite direction to
obtain σ̂2

2 , the OLS estimate based on data D1 and variables ŝ2. These
estimates can then be combined to form a refitted cross-validation esti-
mate

σ̂2
RCV =

n1
n
σ̂2
1 +

n2
n
σ̂2
2 . (2.21)

The above procedure can be repeated several times and averaged to
obtain a more stable estimate.
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FIGURE 2.8
Estimates of σ. In both cases, n = 100, p = 1, 000, and the true
σ = 1. Left: β = 0. Right: βj = 1 for j = 1, 2, . . . , 5; βj = 0 for
j = 6, 7, . . . , 1000.

Figure 2.8 shows the plug-in, cross-validation, and refitted cross-
validation estimates applied to data simulated from model (2.1). For
the case plotted on the left-hand side, β = 0, while for the right-hand
case, five coefficients are equal to 1 and the rest equal to zero. In both
cases, the true σ = 1. In the null case, we can see that the CV and RCV
estimators give reasonable results. In the presence of a strong signal,
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however, the CV estimator has a tendency to overestimate σ2 some-
what, while the RCV estimator yields rather accurate estimates over a
wide range of λ values. The plug-in estimator σ̂2

P is clearly not a reliable
estimator of σ2 across the entire range of λ values: it does not correct
for overfitting, and clearly underestimates σ2 when λ is small. However,
it is worth noting that the plug-in estimator does perform well in both
scenarios at the specific value of λCV. Although Figure 2.8 depicts only
a case study of two simulated data sets, these general conclusions have
been supported by more extensive simulation studies (Fan et al., 2012;
Reid et al., 2016).

2.6.2 Estimating the coefficient of determination

One reason that estimating σ2 is of considerable practical interest is that
it enables us to estimate the proportion of variance in the outcome that
can be explained by the model. This quantity, familiar from classical
regression, is known as the coefficient of determination and denoted R2.

The coefficient of determination is given by

R2 = 1− Var(Y |X)

Var(Y )
. (2.22)

The estimation of σ2 = Var(Y |X) was discussed in 2.6.1; estimation of
Var(Y ) is straightforward.

Once cross-validation has been carried out, calculation of R2 is
straightforward. This can easily be carried out manually in glmnet:

cvfit <- cv.glmnet(X, y)

rsq <- 1-cvfit$cvm/var(y)

and is implemented as a default plot type in ncvreg:

cvfit <- cv.ncvreg(X, y, penalty="lasso")

plot(cvfit, type="rsq")

The resulting plot is shown in Figure 2.9. As the figure shows, at
its maximum, the lasso-penalized linear regression model is capable of
explaining 58% of the variability in mortality. Only a small amount of
this comes from the pollution variables, however: the peak R2, leaving
out the three pollution variables, is 56%.
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FIGURE 2.9
Estimates of R2 for the pollution data.

2.7 Case study: Breast cancer gene expression study

As a case study in applying the lasso to high-dimensional data, we use
breast cancer data from The Cancer Genome Atlas (TCGA) project.
In this dataset, tumour samples were assayed on several platforms.
Here we focus on the gene expression data obtained using Agilent
mRNA expression microarrays. In this dataset, expression measure-
ments of 17814 genes, including BRCA1, from 536 patients are available
at http://cancergenome.nih.gov/. All expression measurements are
recorded on the log scale.

BRCA1 is the first gene identified that increases the risk of early onset
breast cancer. Because BRCA1 is likely to interact with many other
genes, including tumor suppressors and regulators of the cell division
cycle, it is of interest to find genes with expression levels related to that
of BRCA1. These genes may be functionally related to BRCA1 and are
useful candidates for further studies.

For this study, we excluded 491 genes with missing data, resulting in
a design matrix with p = 17, 322 predictors. We start by fitting, and then
plotting, the lasso solution path together with 10-fold cross validation
results:
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cvfit <- cv.glmnet(X, y)

fit <- cvfit$glmnet.fit

xlim <- log(c(fit$lambda[1], cvfit$lambda.min))

plot(fit, xlim=xlim, xvar="lambda")

plot(cvfit)
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FIGURE 2.10
Lasso analysis of TCGA breast cancer data. Dotted lines denote λ̂ and
λ̂1SE.

The output of this code is shown in Figure 2.10. Here, to cut down
on clutter in the coefficient path, we plot the path only up until the λ
value that minimizes CV(λ). Note that the complete-data lasso path is
included with the output of cv.glmnet; it is not necessary to call glmnet
to obtain it.

The vertical lines are drawn at λ̂ and λ̂1SE, the value that minimizes
CV(λ) and the largest λ value within 1 SE of the minimum, respectively.

By the sharp drop in CV error between λ = 0.36 and λ̂ = 0.045, we can
see that the model successfully explains a substantial fraction of the
variability in BRCA1 expression. Specifically, the maximum R2 of the
model is 0.60:

max(1-cvfit$cvm/var(y))

[1] 0.6041819

It is also fairly clear that lowering λ past 0.045 results in progressively
worse predictions.



58 High-Dimensional Regression Modeling

−1000

−500

0

500

1000

1500

λ

A
IC

/B
IC

0.36 0.1 0.03 0.01 0

AIC BIC

FIGURE 2.11
Application of AIC and BIC for the lasso analysis of TCGA breast cancer
data.

Figure 2.11 shows the calculation of AIC and BIC for the breast
cancer data. Unlike the low-dimensional pollution data example, in this
high-dimensional problem AIC gives drastically different results from
cross-validation. In particular, AIC offers no protection against over-
fitting, and is minimized at the (unidentifiable) unpenalized model.
The cross-validation results indicate that this estimate of prediction
error is almost certainly wrong. BIC is more reasonable, suggesting,
like cross-validation, a regularization parameter somewhere in the range
0.05 < λ < 0.10. However, note that the BIC criterion begins to de-
crease again as λ → 0. Both the cross-validation results and common
sense would indicate that this decrease is not meaningful, and merely
the result of asymptotic approximations breaking down as the residual
degrees of freedom approach zero. In this example, we stopped the path
at λmin = 0.005λmax, but if we had continued, the decrease would as
well, and a blind application of BIC would also lead to selecting λ = 0.
In general, while BIC can be useful in selecting λ, (a) cross-validation
is generally more reliable, and (b) it is always a good idea to inspect a
plot like Figure 2.11 when using BIC in high dimensions.

Like many R modeling functions, glmnet offers coef and predict
methods to interact with the fitted model. For example, from the coef-
ficient path we can see that one gene stands out as being particularly
significant. Obviously, it would be of interest to know the identity of
that gene. Using glmnet’s coef operator along with R’s usual subsetting
methods, we learn that this gene is named NBR2:
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> b <- coef(cvfit)

> b[which(b > 0.15),,drop=FALSE]

NBR2 0.3334144

NBR2 is adjacent to BRCA1 on chromosome 17, and recent experimental
evidence indicates that the two genes share a promoter, so its appearance
in the plot makes perfect sense. It is worth noting that NBR2 was not
the first gene to be included in the lasso path – i.e., it was not the gene
with the highest marginal association with BRCA1. This illustrates the
power of a regression-based approach over single gene association test
to identify the most important biological factors from a large volume of
noisy data.

By default, the coef method for cv.glmnet returns β̂(λ̂1SE) and the

coef method for glmnet returns a matrix of β̂ values for the entire grid,

but one can obtain β̂(λ) for any λ value of interest. For example, we can
see that at λ = 0.2, there are eight nonzero gene coefficients (plus the
intercept):

> b <- coef(fit, s=0.2)

> sum(b != 0)

[1] 9

Finally, we illustrate the use of predict to obtain predictions of
BRCA1 expression levels given expression levels for the other genes with
nonzero coefficients in the model. For example, to obtain the predicted
BRCA1 level for subject 85,

> predict(cvfit, X[85,,drop=FALSE])

[1,] -0.4495948

The range of BRCA1 expression in this study ranged from -3.9 to
0.5, so this actually represents a fairly high expected value.

2.8 Case study: Relative tumor size prediction

We present here a second case study involving a lasso analysis, both
for the sake of variety and to illustrate the incorporation of unpenal-
ized variables into an analysis. The data presented here come from a
study by Koussounadis et al. of gene expression changes in ovarian can-
cer(Koussounadis et al., 2014).

The current standard treatment for ovarian cancer consists of surgery,
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followed by either carboplatin and paclitaxel or carboplatin alone. This
approach, however, is not effective for all patients. The goal of this study
was to identify genes and pathways associated with drug response. To
identify such genes, the investigators implanted ovarian cell lines into
adult mice and allowed the tumors to grow for 2 months, at which point
one of three treatments (carboplatin, carboplatin + paclitaxel, or con-
trol) was administered to each mouse. At various time points ranging
from 0 to 14 days following the initiation of treatment, the mice were
sacrificed, at which point the investigators measured the size of the tu-
mor as well as gene expression in the cancerous tissue.

Our analysis here concentrates on relative tumor volume (RTV) as
the outcome variable. We take a log base 2 transformation of RTV so
that y = 1 means that the tumor has doubled in size since baseline. By
definition, y = 0 for all samples taken at day 0. For this study, there
were 34,694 features with expression data and a sample size of 101 mice.

It would appear critical to control for treatment group and time of
collection in analyzing these data, both of which are highly significant
in a marginal analysis. Our goal, however, is to assess the relationship
between gene expression and tumor growth while accounting for the
experimental design. The lasso model (2.2) is easily extended to allow
for such an analysis. Up to this point, we have kept λ the same across
all variables, but all of the derivations in this chapter can be easily
modified to allow variable j to have its own regularization parameter,
λj . In particular, it is trivial to modify the soft-thresholding step (2.16)
of the coordinate descent algorithm so that the update is S(z̃j |λj).

This straightforward extension of the basic lasso model is imple-
mented in both the glmnet and ncvreg packages, albeit with a slight
reparameterization. Those software packages allow one to modify the
penalty applied to individual covariates through the use of a weighting
factor: λj = λwj , where wj is the multiplicative factor applied to term
j, thereby producing the objective function

Qλ(β|X,y,w) =
1

2n
∥y −Xβ∥2 + λ

∑
j

wj |βj | . (2.23)

The idea here is that wj scales the baseline regularization factor λ up or
down for certain covariates.

In general, one could envision carefully choosing a unique wj for
each coefficient based on the likelihood that the feature will play a role
in determining the outcome. For example, we might wish for genes that
have been implicated in past cancer studies to receive less penalization
than other genes.

Our goal here is more simple: by assigning wj = 0 for the treatment
group and time of collection variables, we can include them in the model
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as unpenalized covariates. Unlike the gene expression variables, it is un-
likely that treatment group and time of collection have a near-zero effect
on relative tumor volume, so it does not make sense that they should
receive the same penalization.

In the code below, we construct a 2 degree of freedom spline to rep-
resent the effect of day of collection and allow for an interaction between
day of collection and treatment group. One advantage of penalized re-
gression is that, by preserving the basic structure of regression, building
relatively complex models such as this is as straightforward as it in or-
dinary linear modeling.

library(splines)

sDay <- ns(sampleData$Day, df=2)

X0 <- model.matrix(~ Treatment*sDay, sampleData)[,-1]

w <- rep(0:1, c(ncol(X0), ncol(X)))

XX <- cbind(X0, X)

Here, we have constructed a new design matrix, XX, by prepending the
treatment group and day of collection covariates (without an intercept),
X0, to the matrix of gene expression data, X. We can then carry out the
analysis in glmnet or ncvreg as follows:

y <- log2(sampleData$RTV)

cvfit <- cv.glmnet(XX, y, penalty.factor=w)

## Or:

cvfit <- cv.ncvreg(XX, y, penalty.factor=w, penalty='lasso')

We thought it would be more interpretable here to plot the R2 of the
model; the plots in Figure 2.12 were produced with:

fit <- cvfit$fit # cv.ncvreg output

plot(fit) # Left side

plot(cvfit, type='rsq') # Right side

In this example, R2 is not zero even at λmax; treatment group and
day of collection (which, along with their interaction, consists of 8 co-
variates) alone explain 36% of the variability in RTV. Nevertheless, the
gene expression data seems to provide additional predictive benefit be-
yond that of treatment group and day of collection: by including the
gene expression variables, we can increase the R2 to 45%.
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FIGURE 2.12
Lasso analysis of ovarian cancer chemotherapy data. Dotted line denotes
the value of λ that minimizes the cross-validation error.

2.9 Bayesian interpretation

As with ridge regression (Section 1.6.3), the lasso objective function
(2.2) can be seen to arise from a Bayesian formulation of the regression
model. Here, the prior on the regression coefficients is a Laplace, or
double-exponential, distribution as opposed to a normal distribution:

p(β) =

p∏
j=1

γ

2
exp(−γ|βj |) =

(γ
2

)p
exp(−γ∥β∥1), γ > 0.

The MAP estimator of β is therefore

β̂MAP = argmin
β∈Rp

{ 1

2σ2
∥y −Xβ∥22 + γ∥β∥1}.

This can be written as

β̂MAP = argmin
β∈Rp

{ 1

2n
∥y −Xβ∥2 + γσ2

n
∥β∥1}.

So the lasso solution β̂(λ) corresponds to the MAP estimator β̂MAP with
λ = γσ2/n.
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An alternative Bayesian approach can also be adopted as follows,
based on an interesting result that the Laplace prior can be represented
as a scale mixture of normals. Namely, for γ > 0,∫ ∞

0

1√
2πs

exp(− t
2

2s
)
γ2

2
exp(−γ

2s

2
)ds =

γ

2
exp(−γ|t|). (2.24)

Now suppose that βj has a zero mean Gaussian prior with variance τ2j ,

p(βj |τ2j ) = N(0, τ2j ), and that each τ2j has an exponential (hyper) prior,

p(τ2j ) =
γ2

2
exp

(
−γ

2

2
τ2j

)
, τ2j > 0.

Then by (2.24),

p(βj) =

∫ ∞

0

p(βj |τ2j )p(τ2j )dτ2j =
γ

2
exp(−γ|βj |).

This gives the following hierarchical structure of the model:

y|β, σ2 ∼ Nn(Xβ, σ2In),

β|σ2, τ21 , . . . , τ
2
p ∼ Np(0p, σ

2Dτ ),

Dτ = diag(τ21 , . . . , τ
2
p ),

σ2, τ21 , . . . , τ
2
p ∼ p(σ2)

(
γ2

2

)p p∏
j=1

exp

(
−γ

2

2
τ2j

)
.

Here it is convenient, for the sake of conjugacy, to take p(σ2) = 1/σ2.
Let A = XTX +D−1

τ . The full conditional distributions of the pa-
rameters are as follows.

β|y, σ2, τ21 , . . . , τ
2
p ∼ N(A−1XTy, σ2A−1),

σ2|y,β, τ21 , . . . , τ2p ∼ inverse-gamma (α, β)

with shape parameter α = (n − 1 + p)/2 and scale parameter β =
1
2 (∥y −Xβ∥2 + βTD−1

τ β), where the inverse-gamma density is

p(x;α, β) =
βα

Γ(α)
x−α−1e−β/x, x > 0.

In addition, τ21 , . . . , τ
2
p |y,β, σ2 are conditionally independent with 1/τ2j

conditionally distributed as inverse-Gaussian with parameters a =√
λ2σ2/β2

j and b = λ2, where the inverse-Gaussian density is given by

p(x; a, b) =

√
b

2π
x−3/2 exp

{
−b(x− a)

2

2a2x

}
, x > 0.
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Based on these full conditional distributions, a Gibbs sampling ap-
proach can be used to sample from the posterior distribution that alter-
natively updates β, σ2 and (τ21 , . . . , τ

2
p ). This requires either estimating

the tuning parameter λ or giving it an appropriate hyperprior.
Sampling from the posterior distribution of β certainly provides

richer information than simply finding the MAP estimate; for example,
we can obtain posterior intervals for β. However, unlike finding lasso es-
timates, this approach is unable to take advantage of sparsity. All point
estimates are nonzero at all stages at all steps of the Gibbs sampler,
which renders the approach computationally prohibitive for problems
with large p.

2.10 *Subdifferential calculus and convex optimiza-
tion

Let f be a convex function defined on a convex set A ⊆ Rp. The subd-
ifferential of f at a point x ∈ A is defined as

∂f(x) := {w ∈ Rp : f(y) ≥ f(x) +wT (y − x),∀y ∈ A}.

� A convex function f possesses a subdifferential at every interior
point of its domain.

� If f is convex and differentiable, then

∂f(x) = ∇f(x), (2.25)

where ∇f(x) is the differential (or gradient) of f at x.

� For two convex functions f and g defined on the same domain,

∂(f + g)(x) = ∂f(x) + ∂g(x). (2.26)

Example 2.2. (Subdifferential of |x|.) The subdifferential of f(x) =
|x|, x ∈ R is

∂f(x) =


1, if x > 0,

[−1, 1], if x = 0,

−1, if x < 0.

(2.27)

To see this, verify that |y| − |x| ≥ ∂f(x)(y − x) for every y ∈ R.
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For a convex function, its global minimum can be characterized by
the KKT condition

z∗ ∈ argmin
z∈Rp

f(z) if and only if 0 ∈ ∂f(z∗). (2.28)

This is can be verified as follows. By that definition of subdifferential,
0 ∈ ∂f(z∗) if and only f(z)− f(z∗) ≥ 0T (z−z∗) = 0, for every z. Thus
z∗ ∈ argminf(z).

Note that (2.28) is a generalization of Fermat’s rule for differentiable
functions, that is, when f is differentiable, then

z∗ = argmin
z∈Rp

f(z) if and only if f ′(z∗) = 0.

A useful generalization of (2.28) is

w ∈ ∂f(z) if and only if z = Proxf (z+w), (2.29)

where Proxf is the proximity operator for f defined as

Proxf (z) := argmin
x∈Rp

1

2
∥x− z∥22 + f(x).

This can be shown as follows. By (2.28),

z = Proxf (z+w) = argmin
x∈Rp

1

2
∥x− z−w∥22 + f(x)

⇔ 0 ∈ (z− z−w) + ∂f(z)

⇔ 0 ∈ −w + ∂f(z)

⇔ w ∈ ∂f(z).

The proximity operator of λ∥ · ∥1 is given in a closed form by the
componentwise soft threshold operator, i.e.,

Proxλ∥x∥1
(z) = argmin

x

1

2
∥x− z∥22 + λ∥x∥1 = Sλ(z), (2.30)

where S(z|λ) := [S(z1|λ), . . . , S(zp|λ)]′ and S(·|λ) is the soft threshold
operator given in (2.14), which can also be written as

S(z|λ) = z − |z + λ|
2

+
|z − λ|

2
. (2.31)

Recall the lasso criterion

Q(β;λ) =
1

2n
∥y −Xβ∥2 + λ∥β∥1. (2.32)
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According to Fermat’s rule (2.28), β̂ minimizes Q(β;λ) if and only if

− 1

n
XT (y −Xβ̂) + λ∂(∥β̂∥1) = 0,

In view of (2.27), this is exactly (2.6).
We now describe another characterization of the lasso solution based

on the equations

d =
1

n
XT (y −Xβ), (2.33)

β = S(β + d|λ), (2.34)

where S(·|λ) is the soft threshold operator defined in (2.14).

Proposition 2.1. Let β̂ ∈ Rp be a lasso solution. Then there exists a
d ∈ Rp such that (2.33) - (2.34) hold. Conversely, if there exist β̂,d ∈ Rp

satisfying (2.33)-(2.34), then β̂ is the a minimizer of L.

Proof. Let f1(β) = ∥β∥1. We first assume that β̂ ∈ Rp is a minimizer of
(2.32). Then, by (2.28), we have

0 ∈ 1

n
XT (Xβ̂ − y) + λ∂f1(β̂).

Therefore, there exists d ∈ λ∂f1(β̂) such that

0 =
1

n
XT (Xβ̂ − y) + d,

that is, (2.33) holds.. Furthermore, by (2.29), the inclusion

d ∈ λ∂f1(β̂)

is equivalent to
β̂ = Proxλ∂f1(β̂)(β̂ + d).

Therefore, by (2.30), we have

β̂ = S(β̂ + d|λ),

which proves (2.34).

Conversely, suppose (2.33) and (2.34) hold for some β̂,d ∈ Rp. By

(2.29) and (2.30) again, we deduce d ∈ λ∂f1(β̂) from (2.34). Substituting
this into (2.33), we have

0 ∈ XT (Xβ̂ − y) + λ∂f1(β̂),

which shows that β̂ is a minimizer of (2.32) by Fermat’s rule (2.28).
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Bibliographical notes

This section will include the bibliographical notes on the materials pre-
sented in this chapter.

Exercises

2.1. Unique/non-unique lasso solutions. Suppose n = 2 and p = 2, with
(y1, x11, x12) = (1, 1, 1) and (y2, x21, x22) = (−1,−1,−1). Show that the
lasso solution is the one given in Example 2.1.

2.2. Convexity of loss functions.

(a) Show that the lasso objective function (2.2) is convex, but not
necessarily strictly convex. Under what condition(s) will the ob-
jective function be strictly convex?

(b) Let η = Xβ denote the linear predictors (fitted values) for a
regression model. Let

L(η|y) = 1

2n
∥y − η∥22

denote the loss function for linear regression, written as a function
of η. Show that the loss is strictly convex as a function of η.

2.3. Uniqueness of lasso predictions. This exercise concerns claim (2.9),

that even though the lasso estimates β̂ may not be unique, their fitted
values are. Suppose β̂1 and β̂2 are two distinct lasso solutions; that is,

both β̂1 and β̂2 minimize Q(β|X,y) at a given value of λ, with β̂1 ̸= β̂2.

Show that Xβ̂1 = Xβ̂2. Hint: Use the result from Exercise 2.2(b) and
the definition of a convex function.

2.4. Standardization and t-tests. Let xj and y be centered, but not
scaled, with x̃j the scaled version of xj . Consider the orthogonal case,
in which xT

j xk = 0 for all j, k. As we have seen, the standardized lasso

will select a feature if n−1
∣∣x̃Tj y∣∣ > λ.

(a) Show that for the unstandardized lasso, a feature is selected if

1
n

∣∣x̃Tj y∣∣ > λ
√
xT
j xj/n.
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(b) Show that for OLS regression, the classical t-test declares a feature
to be significant for a given critical value t∗ if

1
n

∣∣x̃Tj y∣∣ > λ,

where λ = t∗σ̂/
√
n.

In other words, there is a certain equivalence between the lasso and
classical testing, but this equivalence is lost if the features are not stan-
dardized.

2.5. Soft thresholding is the lasso solution in the orthonormal case. Show
that the soft thresholding operator defined in (2.13) minimizes (2.11).

2.6. Programming the coordinate descent algorithm. Write an R func-
tion called lasso() that implements the coordinate descent algorithm
for the lasso assuming a standardized feature matrix. In other words,
calling lasso(X, y, lambda=0.1) should return the correct coefficients
assuming that X is standardized as one might get from ncvreg::std(X),
for example.

2.7. Programming the coordinate descent algorithm, part 2. Build upon
the function from Exercise 2.6, now dropping the requirement that the
feature matrix must be pre-standardized. The function should begin by
standardizing the feature matrix, then using the coordinate descent al-
gorithm as before, and then at the end reversing the standardization
process so that the coefficients are returned on the original scale.

2.8. Programming the coordinate descent algorithm, part 3. Build upon
the function from Exercise 2.7, only now fit the entire solution path.
The function should calculate a grid of λ values equally spaced on the
log scale, starting at λmax, then loop over these values. A matrix of
coefficients, one for each feature and value of λ, should be returned.

2.9. Degrees of freedom for the lasso (orthonormal case). Let f(yi) de-
note the fitted value for observation i, considered as a function of the
observed value yi. For regression model (2.1), Stein’s lemma (Stein, 1981)
states the degrees of freedom for a fitting method is given by

df =

n∑
i=1

f ′(yi),

provided that f is absolutely continuous and E|f ′| <∞. Use this lemma
to show that the degrees of freedom for the lasso is equal to the number
of nonzero coefficients. For the sake of this problem, assume that the
features are orthonormal: xT

j xk = 0 for all j and k, and 1
nx

T
j xj = 1 for

all j. A proof in the general case is provided in Zou et al. (2007).
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2.10. WHO study of acute respiratory illness, revisited. Re-analyze the
pneumonia data from Exercise 1.11, this time using the lasso instead of
ridge regression.

(a) How many coefficients are nonzero for the value of λ that mini-
mizes cross-validation error? How many are nonzero for the largest
value of λ within 1 SE of the minimum CV error? Is there convinc-
ing evidence that these models are better than the null model?
Is there convincing evidence that they are better than the OLS
model?

(b) Briefly, describe the variables that appear to be most important
based on the lasso estimates.

(c) Comment on the number of nonzero coefficients in the model that
minimizes CVE and how that number compares to the number
of statistically significant coefficients in the OLS model. Which
criterion is more liberal?

(d) For the model that minimizes CVE, describe how the lasso esti-
mates of sucking ability (absu) and drinking ability (afe) compare
to the ridge and OLS estimates. Which estimates do you consider
to be most reasonable? Why?

2.11. Simulation comparing ridge regression, forward selection, and the
lasso. For this simulation, generate the elements of the design matrix
according to Xij ∼ N(0, 1), with yi ∼ N(xT

i β, 1). The simulation should
compare three modeling approaches: (1) forward selection, (2) ridge re-
gression, and (3) the lasso. To carry out forward selection, you can use
the step() function:

step(fit0, scope=form, direction="forward", k=log(n), steps=n-5)

where fit0 is the fit from the null model and form is a formula describing
the full model. Here, k=log(n) specifies the use of BIC as a stopping
rule.

Consider the following simulation settings, each with n = 50:

(I) Let p = 16 and set two β = 5, two β = −5, and the rest equal to
zero.

(II) Let p = 100 and set two β = 5, two β = −5, and the rest equal
to zero.

(III) Let p = 50 and set five β = 1, five β = −1, and the rest equal to
zero.
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(IV) Let p = 100 and set twenty-five β = 0.5, twenty-five β = −0.5,
and the rest equal to zero.

For each simulation setting, calculate the squared error ∥β− β̂∥2 for
each method and present a box plot that compares this squared error loss
across the methods. Based on your results, comment on the situations
in which you would expect ridge, forward selection, or the lasso to yield
the most accurate estimates.



3

Bias reduction

3.1 Adaptive lasso

Although the lasso has many excellent properties as discussed in Chap-
ter 2, it is also a biased estimator. This can be seen from the penalized
score equation (KKT condition)

1

n
XT (y −Xβ)− λs(β) = 0.

A fundamental property of classical maximum likelihood estimation is
that the expected value of the score statistic is zero when evaluated at the
true value of the unknown parameter. This is not true of the penalized
score equation for the lasso:

E[
1

n
XT (y −Xβ)− λs(β)] = −λs(β).

In other words, the bias of the estimating equation is on the order of λ,
since the range of s is [−1, 1].

To see this another way, consider the simple scenario where X is
orthogonal and the lasso has a closed form solution (2.13). Then

E|β̂j − βj | = 0 if βj = 0

E|β̂j − βj | ≈ βj if |βj | ∈ [0, λ]

E|β̂j − βj | ≈ λ if |βj | > λ

The last two results are only approximate because the bias depends on
the probability that |β̂OLS| > λ, which in turn depends on the sample
size. However, at least for reasonably large samples, the bias of the lasso
estimate is about λ for large regression coefficients.

Given that the bias of the estimate is determined by λ, one approach
to reducing the bias of the lasso is to use the weighted penalty approach
of (2.23). If one was able to choose the weights w such that the variables
with large coefficients had smaller weights, then we could reduce the

71



72 High-Dimensional Regression Modeling

estimation bias of the lasso while retaining its sparsity property. Indeed,
by more accurately estimating β, one would even be able to improve on
the variable selection accuracy of the lasso.

All of this may seem circular in the sense that if we already
knew which regression coefficients were large and which were small, we
wouldn’t need to be carrying out a regression analysis in the first place.
However, it turns out that the choice of w does not need to be terri-
bly precise in order to realize benefits from this approach. In practice,
one can obtain reasonable values for w from an initial estimator of β.
Theoretical justifications for this approach require the initial estimator
to be consistent. Thus, in low-dimensional models with n≫ p, the OLS
estimator can be used as the initial estimator. For high dimensional
models with p > n, it is more difficult to obtain a good initial estimator,
although the lasso solution itself would seem a natural choice.

Let β̃ denote the initial estimate. The adaptive lasso estimate β̂ is
then defined as the argument minimizing the following objective func-
tion:

Q(β|X,y,w) =
1

2n
∥y −Xβ∥2 + λ

∑
j

wj |βj |

wj = |β̃j |−1.

(3.1)

In line with our earlier discussion, note that this weighting scheme as-
signs smaller weights to larger regression coefficients, based off of the
initial estimate β̃. Note as well that if the initial estimate β̃j = 0, as
would not be uncommon if the lasso were used as an initial estimator,
we have wj =∞, so β̂j = 0 in order to minimize (3.1).

In the above approach, known as a two-stage approach, a single initial
estimate β̃ is made, which in turn produces a single set of weights w,
which are held constant across all values of λ in (3.1). An alternative
approach, known as a pathwise approach is to let the weights change
with λ:

wj(λ) = w(β̃j(λ)).

Here, the initial estimate is typically a lasso estimator, so that λ has the
same meaning for the initial estimator as it does for the re-weighted, or
adaptive, estimator.

3.1.1 Alternative weighting strategies

There are many possibilities besides wj = |β̃j |−1 for choosing weights
based on initial estimates, although to accomplish the goal of assign-
ing small weights to large coefficients, it is reasonable to require that the
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function w(β) is nonincreasing. In principle, any of these weighting func-
tions could be used in either a two-stage or adaptive approach, although
the resulting estimators may be quite different.

One straightforward extension is to allow powers other than −1:

wj = |β̃j |−γ ,

where γ influences how dependent on the initial value the final estimates
are. In particular, as γ → 0, we arrive back at the original lasso estima-
tor, as all coefficients with nonzero initial estimates are given the same
weight.

Another possibility is to apply a thresholding operator to the initial
estimator to produce weights:

wj =

{
0 if |β̃j | > τ,

1 if |β̃j | ≤ τ.
(3.2)

In this approach, if the initial solution β̃j is greater than τ , the corre-
sponding coefficient is not penalized in the second stage. This approach
also differs from the earlier weighting strategies in that no coefficients
are assigned infinite weights. Thus it is possible for variables to be se-
lected by the final model even though they were not selected by the
initial estimator.

Finally, a more extreme weighting scheme is

wj =

{
0 if β̃j ̸= 0,

∞ if β̃j = 0.
(3.3)

When applied in a two-stage fashion, this approach is known as the
lasso-OLS hybrid estimator, and is equivalent to fitting an OLS model
to only those variables selected by the lasso estimator. In other words,
we use the lasso for variable selection, but OLS for estimation. When
the approach is applied in a pathwise fashion, it is known as the relaxed
lasso.

3.2 Concave penalties

The adaptive lasso consists of a two-stage approach involving an initial
estimator to reduce bias for large regression coefficients. An alternative
single-stage approach is to use a penalty that tapers off as β becomes
larger in absolute value. Unlike the absolute value penalty employed
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by the lasso, a tapering penalty cannot be convex. Rather, the penalty
function P (β|λ) will be concave with respect to |β|. Such functions are
often referred to as folded concave penalties, to clarify that while P (·)
itself is neither convex nor concave, it is concave on both the positive
and negative halves of the real line, and also symmetric (or folded) due
to its dependence on the absolute value.

In this section, we write the objective function as

Q(β|X,y) = 1

2n
∥y −Xβ∥2 +

p∑
j=1

P (βj |λ, γ), (3.4)

where P (β|λ, γ) is a folded concave penalty. Unlike the lasso, many
concave penalties depend on λ in a non-multiplicative way, so that
P (β|λ) ̸= λP (β). Furthermore, they typically involve a tuning param-
eter γ that controls the concavity of the penalty (i.e., how rapidly the
penalty tapers off). A variety of concave penalties have been proposed,
including: (a) the smoothly clipped absolute deviations (SCAD) penalty;
(b) the minimax concave penalty (MCP); and (c) the capped ℓ1 penalty;
and (d) the bridge penalty.

3.2.1 SCAD and MCP

One of the earliest and most influential folded concave penalties was
SCAD, with the penalty function

P (x;λ, γ) =


λ|x| if |x| ≤ λ,
2γλ|x|−x2−λ2

2(γ−1) if λ < |x| < γλ,
λ2(γ+1)

2 if |x| ≥ γλ

for γ > 2. Note that for x ≥ 0, the SCAD penalty coincides with the lasso
penalty until x = λ, then smoothly transitions to a quadratic function
until x = γλ, after which it remains constant for all x > γλ. The penalty
may be written more compactly as

P (x;λ, γ) = λ

∫ |x|

0

min{1, (γ − t/λ)+/(γ − 1)}dt,

where x+ ≡ x1{x≥0} denotes the nonnegative part of x.
It is typically more instructive to consider a penalty’s derivative than

the penalty itself, as the derivative is the contribution made by the
penalty to the penalized estimating equations (KKT conditions). The
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derivative of the SCAD penalty is

Ṗ (x;λ, γ) =


λ if |x| ≤ λ,
γλ−|x|
γ−1 if λ < |x| < γλ,

0 if |x| ≥ γλ.

This lends some insight into the bias reduction properties of the SCAD
penalty. As remarked earlier, the bias of the lasso is on the order of its
rate of penalization, λ. The SCAD penalty retains that penalization rate
for small coefficients, but continuously relaxes the rate of penalization as
the absolute value of the coefficient increases. This relaxation of the rate
of penalization is linear and takes place until the rate of penalization
equals zero.

The idea behind MCP is very similar. The penalty takes the form

Pγ(x;λ) =

{
λ|x| − x2

2γ , if |x| ≤ γλ
1
2γλ

2, if |x| > γλ
(3.5)

for γ > 1, or more compactly,

Pγ(x;λ) = λ

∫ |x|

0

(1− t/(γλ))+dt. (3.6)

Its derivative is

Ṗγ(x;λ) =

{
(λ− |x|

γ )sign(x), if |x| ≤ γλ,
0, if |x| > γλ.

(3.7)

As with SCAD, the MCP starts out by applying the same rate of pe-
nalization as the lasso, then smoothly relaxes the rate down to zero as
the absolute value of the coefficient increases. In comparison to SCAD,
however, the MCP relaxes the penalization rate immediately while with
SCAD the rate remains flat for a while before decreasing. The lasso,
SCAD, and MCP penalties are depicted in Figure 3.1.

As the figure indicates, the penalty functions for lasso, SCAD, and
MCP are all continuous, symmetric about zero, and produce sparse esti-
mates (as the rightmost plot indicates, β̂ = 0 whenever the unpenalized
solution is less than 1 in absolute value). Of the three, only the lasso is
convex, although as we have seen, this results in biased estimates.

Figure 3.1 also illustrates the sense in which the MCP is mini-
max concave. Out of all penalty functions continuously differentiable
on (0,∞) that satisfy Ṗ (0+;λ) = λ and Ṗ (t;λ) = 0 for all t ≥ γλ, the
MCP minimizes the maximum concavity

κ = sup
0<t1<t2

Ṗ (t1;λ)− Ṗ (t2;λ)
t2 − t1

. (3.8)
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FIGURE 3.1
Shapes of the lasso, SCAD and MCP penalty functions. The panel on
the left plots the penalties themselves; the panel in the middle plots the
derivative of the penalty (note that none of the penalties are differen-
tiable at 0); and the panel on the right plots the threshold operators
corresponding to the penalties. On the right, z denotes the unpenalized
OLS solution, as in Section 3.2.2. For the SCAD and MCP penalties,
γ = 3.

As the figure shows, the derivatives of SCAD and MCP are equal at 0
and again at γλ, but MCP has a constant concavity of κ = 1/γ = 1/3
over this region, while SCAD has a concavity of 0 from t = 0 to t = λ
and a concavity of κ = 1/(γ− 1) = 1/2 from t = λ to t = γλ. As we will
discuss further in 3.6, as a penalty becomes more concave, optimization
becomes more problematic as multiple local minima proliferate. Thus,
MCP is typically more stable from an optimization standpoint than other
folded concave penalties such as SCAD (for the same value of γ).

3.2.2 Solutions in the orthonormal case

As with the lasso, MCP and SCAD have closed-form solutions in the or-
thonormal case n−1XTX = I that provide insight into how the methods
work. Here, we let z = x′y/n denote the unpenalized (OLS) solution, as
in Section 2.2.

For MCP, the univariate solution is known as the firm thresholding
operator:

F (z|λ, γ) =

{
γ

γ−1S(z|λ) if |z| ≤ γλ,
z if |z| > γλ.

(3.9)
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As γ →∞, the firm thresholding operator becomes equivalent to the soft
thresholding operator: F (z|λ, γ)→ S(z|λ). As γ → 1, it becomes equiv-
alent to hard thresholding. Thus, as γ changes, the solution bridges the
gap between soft and hard thresholding; hence the name “firm thresh-
olding”.

The SCAD solution is similar, although somewhat more complicated.
The SCAD thresholding operator is

TSCAD(z|λ, γ) =


S(z|λ), if |z| ≤ 2λ,
γ−1
γ−2S(z|

γλ
γ−1 ), if 2λ < |z| ≤ γλ,

z, if |z| > γλ.

(3.10)

As with MCP, TSCAD(·|λ, γ) → S(·|λ) as γ → ∞. However, as γ → 2,
TSCAD(·|λ, γ) does not converge to hard thresholding; instead, it con-
verges to {

S(z;λ), if |z| ≤ 2λ,

z, if |z| > 2λ.
(3.11)

In other words, both TSCAD and F converge to discontinuous functions
as γ approaches its minimum value: for the firm thresholding operator
F , the solution jumps from 0 to λ as z exceeds λ, while for the SCAD
thresholding operator TSCAD, the solution jumps from λ to 2λ as z ex-
ceeds 2λ.

3.2.3 Solution paths

To get a sense of how the MCP, SCAD, and adaptive lasso estimates
compare to those of the regular lasso, we consider here the solution
paths for the four penalties fit to the same data. We generate data from
the linear regression model yi =

∑1000
j=1 xijβj + εi, i = 1, . . . , 200, where

(β1, . . . , β4) = (4, 2,−4,−2) and the remaining coefficients are zero. The
R code to reproduce this data is given below:

set.seed(105)

n <- 200; p <- 1000

X <- matrix(rnorm(n*p), nrow=n, ncol=p)

z1 <- rnorm(n); z2 <- rnorm(n)

X[,1:4] <- X[,1:4]+z1

X[,5] <- X[,5]+2*z1

X[,6] <- X[,6]+1.5*z1

X[,7:20] <- X[,7:20]+0.5*z1

X[,21:40] <- X[,21:40]+0.5*z2

beta <- c(4, 2, -4,-2, rep(0, 996))

y <- rnorm(n, X%*%beta, sd=1.5)
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FIGURE 3.2
Solution paths for four different penalties fit to the same data.

Figure 3.2 depicts the solution paths for each of the four penalties
for this data. For the adaptive lasso, we present the pathwise approach
with weights wj(λ) = |β̃j(λ)|−1. For the MCP, we use γ = 3 while for
SCAD we use γ = 4. As the paths show, the primary way in which the
three penalties introduced in this chapter differ from the lasso is that
they allow the estimated coefficients to reach large values more quickly
than the lasso. In other words, although the methods all shrink most of
the coefficients towards zero, MCP, SCAD, and the adaptive lasso apply
less shrinkage to the nonzero coefficients; this is what we refer to in this
chapter as bias reduction.

In this example, one can clearly see the piecewise components of
MCP and SCAD. From λ = 3 down to λ ≈ 1.8, the SCAD and lasso
solutions are equivalent. For MCP, on the other hand, at λ ≈ 1.8 the
coefficient estimates for the two largest coefficients are very close to
their true values, while the rest of the coefficients are still all zero. From
λ ≈ 1.8 to λ ≈ 1.4, the SCAD estimates for the two largest coefficients
make a fairly rapid transition from the lasso estimates to the unpenalized
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estimates. A similar phenomenon happens for the other two coefficients.
In particular, it is worth noting that both MCP and SCAD possess an
interval of λ values over which all the estimates are flat – over this
region, the estimates are the same as those of ordinary least squares
regression, but with only the four variables with nonzero effects included.
These estimates are referred to as the oracle estimates. They were first
introduced in Section 1.3, and will be discussed further in Chapter 5.

In comparison, the adaptive lasso paths are not piecewise and change
more smoothly as a function of λ. At λ ≈ 0.25, the adaptive lasso solu-
tions are quite close to the oracle estimates, although not exactly equal
to them. Also, note that while λmax is exactly the same for MCP, SCAD,
and lasso, this is not true of the adaptive lasso.

3.2.4 The effect of γ

As discussed in the previous sections, the tuning parameter γ for the
SCAD and MCP estimates controls how fast the penalization rate goes
to zero. This, in turn, affects the bias of the estimates as well as the
stability of the estimate (in the sense that as the penalty becomes more
concave, there is a greater chance for multiple local minima to exist).
As γ → ∞, both the MCP and SCAD penalties converge to the ℓ1
penalty. Here, bias is largest, but stability is greatest, as the optimization
problem is once again convex. As γ approaches its minimum value, bias
is minimized, but both estimates become unstable.

In the above paragraph, we used “stability” in the optimization sense
that an objective function with a single, well-defined minimum is stable
while optimization problems with multiple local minima tend to be un-
stable. However, the same remarks apply with respect to the statistical
properties of the estimators, in the sense that a more highly variable
estimator is less stable. For SCAD and MCP, lower values of γ also pro-
duce more highly variable (less stable) estimates. Thus, the γ parameter
also plays a key role in controlling the bias-variance tradeoff.

To illustrate, Figure 3.3 plots the bias and variance of the MCP and
SCAD estimates as a function of γ under orthonormal design conditions.
In general, there is no ideal value of γ in terms of optimizing MSE. De-
pending on the signal-to-noise ratio, the optimal estimates could be pro-
duced by hard thresholding, soft thresholding, or something in between.
In this example, MSE is relatively flat as a function of γ. However, γ
has a large impact on the bias and variance, with estimates becoming
increasingly variable as γ approaches its minimum.

Figure 3.4 revisits the example from Section 3.2.3 to show how the
solution paths for MCP change depending on the value of γ. The fig-
ure depicts the MCP solution paths for γ ∈ {1.5, 2.7, 6}. The paths are
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FIGURE 3.3
Bias and variance of MCP and SCAD as a function of γ, with λ held
constant at 1. In this example, σ2 = 6, n = 10, and there is a single
feature with β = 1.

dramatically different from each other. For γ = 1.5, the MCP paths
make a nearly discontinuous jump from zero all the way to their unpe-
nalized solutions; the solution path here is essentially the same as hard
thresholding/forward selection. As γ increases, the transition from 0 to
unpenalized solution becomes more gradual. As γ →∞; the MCP path
becomes equal to the lasso path from Figure 3.2.
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MCP coefficient paths for simulated example of Section 3.2.3, with n =
200, p = 1000 for three values of γ.



Bias reduction 81

3.3 Other nonconvex penalties

Several other nonconvex penalties have been proposed. As with MCP,
SCAD, and adaptive lasso, the primary motivation behind these penal-
ties is to reduce the bias towards zero introduced by the lasso penalty.
We briefly introduce some of these penalties here in less detail.

The MCP and SCAD penalties are continuously differentiable except
at 0. A less smooth penalty is the capped ℓ1 penalty

P (x;λ, γ) = min(γλ2/2, λ|x|) =

{
λ|x|, |x| ≤ γλ/2,
γλ2/2, |x| > γλ/2,

(3.12)

where it is required that γ > 1.. This penalty also modifies the ℓ1 penalty
by truncating it at x = γλ/2, and it is not differentiable at this point.
Its derivative is

Ṗ (x;λ, γ) =

{
λ, 0 ≤ x ≤ γλ/2,
0 x > γλ/2.

(3.13)

In this expression, the derivative at x = γλ/2 is the left derivative. Like
MCP and SCAD, the γ tuning parameter controls the extent of bias
reduction, with the penalty becoming equivalent to the lasso as γ →∞.

Another interesting concave penalty is the bridge penalty

P (x;λ, γ) = λ|x|γ , 0 < γ < 1. (3.14)

Here we require 0 < γ < 1. Its derivative

Ṗ (x;λ, γ) =

{
λγ|x|γ−1sign(x) if x ̸= 0,

∞ if x = 0.
(3.15)

The bridge penalty has the oldest history of the nonconvex penalties
mentioned in this chapter, having been originally proposed in 1993, be-
fore the lasso, nearly a decade before SCAD, and over a decade be-
fore MCP and the adaptive lasso. However, the derivative of the bridge
penalty at 0 is singular, which introduces the unfortunate consequence
that βj = 0 is always a local minimum of the objective function. This
makes the bridge penalized solutions much more difficult to obtain com-
putationally, especially in high-dimensional models.
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3.4 Bayesian connection

As discussed in Section 2.1, the Laplace prior corresponding to the ℓ1
penalty can be constructed from scale mixtures of normal distributions
and exponential distributions. For the MCP P (x;λ, γ), because it is con-
stant for |x| > γλ, the corresponding prior exp(−P (x;λ, γ) is improper.
However, it turns out that the MCP can also be constructed from scale
mixtures of normal distributions, based on a representation of the MCP
as the Moreau envelope of a simple quadratic function.

Let λ > 0 and γ > 0. Then,{
λ
∫ |x|
0

(1− t
γλ )+dt = minτ≥0

{
τ |x|+ γ

2 (τ − λ)
2
}

λ(1− |x|
γλ )+ = argminτ≥0

{
τ |x|+ γ

2 (τ − λ)
2
} (3.16)

Based on (3.16), we can formulated the MCP penalized solution as
a MAP solution as follows. Suppose z ∼ N(θ, 1). Consider the priors

p(θ|τ, γ, λ) ∝ τ exp(−τ |θ|), p(τ |γ, λ) ∝ τ−1 exp{−γ(τ − λ)2/2}1{τ>0}.

The posterior

p(θ, τ |z; γ, λ) ∝ exp(−1

2
(z − θ)2) exp(−τ |θ|) exp{−γ(τ − λ)2/2}1{τ>0}.

For any given γ > 0, the resulting MAP estimator for (θ, τ) is

(θ̂, τ̂) = argmin
θ∈R,τ∈R+

1

2
|z − θ|2 + τ |θ|+ γ

2
(τ − λ)2.

Therefore, by (3.16), the unique solution is the MCP threshold estimator,
that is, {

θ̂ = argminθ
1
2 |z − θ|

2 + λ
∫ |θ|
0

(1− t
γλ )+dt,

τ̂ = λ(1− |θ̂|/(γλ))+.
A direct consequence of (3.16) is{

λ
∑p

j=1

∫ |xj |
0

(
1− t

γλ

)
dt = minτ∈Rp

+

∑p
j=1

(
|xj |τj + γ

2 (τj − λ)
2
)

λ(1− |xj |
γλ )+ = argminτ≥0

{
τ |xj |+ γ

2 (τ − λ)
2
}
, j = 1, . . . , p.

(3.17)
Therefore, the MCP solution can be formulated as a MCP solution in
the following way. Let

(θ̂, τ̂ ) = argmin
b∈Rp,τ∈Rp

+

{ 1

2n
∥y −Xb∥2 +

p∑
j=1

{τj |bj |+
γ

2
(τj − λ)2}

}
.

(3.18)
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Then{
θ̂ = argminb∈Rp{ 1

2n∥y −Xb∥2 +
∑p

j=1 PMCP(|bj |;λ, γ),
τ̂j = λ(1− |θ̂j |

γλ )+, j = 1, . . . , p.

So the MCP solution can be obtained by solving (3.18). It is interesting
to note that the objective function in (3.18) is convex in (θ, τ ).

The expression (3.18) naturally leads to an iterative algorithm for

computing the MCP solutions. Let β̂
0
(λ) = β̃(λ) be an initial estimator,

for example, we can take β̃(λ) to be the lasso solution. Then, for s =
1, 2, . . ., the iteration proceeds as follows,{

τ̂s(λ) = λ(1− |β̂s−1
j |/(γλ))+, j = 1, . . . , p,

β̂
s
(λ) = argminb∈Rp

{
1
2n∥y −Xb∥2 +

∑p
j=1 τ

s
j (λ)|bj |

}
.

(3.19)

Interestingly, this is the same as the algorithm based on the local linear
approximation discussed below.

Since the objective function in (3.18) is convex, this expression also
opens up the possibility of designing efficient algorithms for obtaining
global solutions to MCP penalized regression.

3.5 Algorithms

3.5.1 Coordinate descent

The coordinate descent algorithm described for the lasso in Chapter 2.4
can be modified for use with objective functions containing nonconvex
penalties. We describe these modifications here for the MCP and SCAD
penalties, but the idea is broadly applicable.

Given the current value β̃(s) in the sth iteration for s = 0, 1 . . ., the
algorithm for computing β̂ is given in Algorithm 3.1.

The algorithm is identical to Algorithm 2.1 except for the step in
which β̃j is updated. Although the MCP and SCAD penalties are not
convex functions, the objective function itself is convex with respect
to any individual coordinate, as we state in the following lemma. As a
result, the coordinate-wise updates are unique and always occur at the
global minimum with respect to that coordinate.

Lemma 3.1. Let Qj(βj |β−j) denote the objective function Q defined in
(3.4) as a function of the single variable βj, with the remaining elements
of β fixed. For the SCAD penalty with γ > 2 and for the MCP with
γ > 1, Qj(βj |β−j) is a convex function of βj for all j.
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Algorithm 3.1 Coordinate descent algorithm for MCP/SCAD

repeat
for j = 1, 2, . . . , p

z̃j = n−1
∑n

i=1 xijri + β̃
(s)
j

β̃
(s+1)
j ←

{
F (z̃j |λ, γ) for MCP, or

TSCAD(z̃j |λ, γ) for SCAD

ri ← ri − (β̃
(s+1)
j − β̃(s)

j )xij for all i

until convergence

From this lemma, we can establish the following convergence proper-
ties of coordinate descent algorithms for SCAD and MCP. The technical
details involved in proving these properties are given in Section 3.8.

Proposition 3.1. Let {β(s)} denote the sequence of coefficients pro-
duced at each iteration of the coordinate descent algorithms for SCAD
and MCP. For all s = 0, 1, 2, . . .,

Q(β(s+1)) ≤ Q(β(s)).

Furthermore, the sequence is guaranteed to converge to a local minimum
of Q(β).

While the objective functions for SCAD and MCP are convex in
each coordinate dimension, they are not convex in general. Thus, multi-
ple minima may exist, each satisfying the KKT conditions. The coordi-
nate descent algorithm introduced here is not guaranteed to converge to
the global minimum in such cases; neither are the local approximation
algorithms of the next section. The issues of convexity and multiple so-
lutions are discussed in greater detail, including a concrete example, in
Section 3.6.

3.5.2 Local approximations

For MCP and SCAD, one can obtain closed-form coordinate-wise min-
ima and use those solutions as updates. An alternative approach, which
is particularly useful in penalties that do not yield tidy closed-form so-
lutions, is to construct a local approximation of the penalty. One can
construct quadratic approximations (the local quadratic approximation,
or LQA, algorithm) so that the optimization problem resembles ridge
regression and equation (1.18) can be used, or linear approximations
(the local linear approximation, or LLA, algorithm) so that the opti-
mization problem resembles the lasso and either the LARS algorithm or
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coordinate descent methods from Chapter 2 can be used. In general, for
sparsity-inducing penalties the LLA algorithm is more efficient, as LQA
is unable to take advantage of sparsity.

The idea behind the LLA algorithm is to construct a linear approxi-
mation to the penalty in (3.4):

P (|x|) ≈ P (|x0|) + Ṗ (|x0|)(|x| − |x0|).

Note that with this approximation, the penalty takes on the form of
the lasso penalty (with Ṗ (|x0|) playing the role of the regularization
parameter) plus a constant. The approximation is applied in an iterative

fashion. Thus, at the sth iteration, letting λ̃j = Ṗ (|β(s−1)
j |), the update

is given by

β(s) = argmin
b∈Rp

 1

2n
∥y −Xb∥2 +

p∑
j=1

λ̃j |bj |

 . (3.20)

It is worth noting the similarity between LLA and the adaptive lasso –
equations (3.1) and (3.20) are nearly identical. However, the adaptive
lasso weights are assigned in a more or less ad hoc fashion based on
an initial estimator, while the LLA modifications to λ are explicitly
determined by the penalty function P .

Like coordinate descent, LLA is guaranteed to drive the objective
function downhill with every iteration and to converge to a local mini-
mum of Q(β). For MCP, the LLA leads to the same iteration algorithm
given in (3.19).

Local quadratic approximation

To find the value of β that optimizes (1.14), the local quadratic ap-
proximation (LQA) algorithm approximates the penalty by a quadratic
function. For x ≈ x0,

Ṗ (|x|) = P ′(|x|)sign(x) ≈ {Ṗ (|x0|)/|x0|}x.

Therefore,

P (|x|) ≈ P (|x0|) +
1

2
{Ṗ (x0)/|x0|}(x2 − x20).

Let β(0) be an initial solution. Then for k = 1, 2, . . ., the iterative solution
β(k) is the argument minimizing

1

2n
∥y −Xb∥2 + 1

2

p∑
j=1

Ṗ (β
(k−1)
j ;λ)

|β(k−1)
j |

b2j
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This minimization problem is an adaptively weighted ridge regression
with the weights determined by the penalty function and the previous

solution. Let w(β;λ) = Ṗ (β;λ)/|β|, and let W(k) = diag(w(β
(k)
j ;λ), j =

1, . . . , p). Then

β(k) = argmin
b∈Rp

{
1

2n
∥y −Xb∥2 + 1

2
bTW(k−1)b

}
, k = 1, 2, . . . .

The explicit solution is

β(k) = (n−1XTX+W(k−1))−1XTy/n, k = 1, 2, . . . .

The main computational task is the calculation of the inverse of the
p × p matrix of the form n−1XTX +W. In p ≫ n models, this can be
calculated using

(n−1XTX+W) = W−1 − n−1W−1XT (I+ n−1XW−1XT )−1XW−1.

However, the LQA algorithm does not produce sparse solutions. It is
necessary to threshold small coefficients to obtain sparse solutions.

3.6 Global and local convexity

As noted in Section 3.5, models with nonconvex penalties may possess
multiple minima to their objective functions. This is problematic for
two reasons. First, neither coordinate descent nor the LLA algorithm
are guaranteed to converge to the global minimum; if multiple minima
are present, we may obtain an inferior solution as our estimate. Second,
estimation will no longer be continuous, in the sense that small changes
to the data or to the regularization parameter can lead to large changes
in the estimate, as our solution “jumps” from one minima to another.
In this section, we discuss these issues in greater detail.

We begin by noting that it is possible for the objective function Q
to be convex with respect to β even though the penalty component
is nonconvex. Letting cmin denote the minimum eigenvalue of XTX/n,
the MCP objective function is strictly convex if γ > 1/cmin, while the
SCAD objective function is strictly convex if γ > 1+1/cmin. In this case,
the coordinate descent and LLA algorithms will converge to the unique
global minimum of Q. Thus, at least for MCP and SCAD, provided that
X is full rank it is always possible to choose γ such that the objective
function is convex.
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However, obtaining strict convexity is not always possible or desir-
able. For example, in high-dimensional settings where p > n, cmin will
always be zero and a strictly convex objective function not possible un-
less the penalty is strictly convex. Nevertheless, it is not true in general
that convex penalties outperform nonconvex ones in such scenarios, as
the following example demonstrates.

Example 3.1. For this example, we will set n = 50 and p = 100. All
features xj will follow standard Gaussian distributions and be indepen-
dent of each other. Note that in this construction, X cannot be full
rank and the MCP and SCAD objective functions will not be convex.
In the generating model, we set β1 = β2 = β3 = · · · = β6 ̸= 0 and
β7 = β8 = · · · = β100 = 0. The nonzero values of β1 through β6 were
varied to produce a range of signal to noise ratios. For this problem,

Var(Y ) = Var(E(Y |X)) + E(Var(Y |X))

= βTVar(X)β + σ2

= βTβ + σ2.

The first term in the sum is known as the signal and the second term
the noise. For each data set, an independent data set of equal size was
generated for the purposes of selecting the regularization parameter.
The estimates presented are those for the value of λ that minimized the
prediction error on the validation data set.

Figure 3.5 presents the mean squared error (i.e, average value of

∥β̂−β∥2) for this simulation across various SNR settings and for various
γ values for MCP and SCAD.

As the figure indicates, for low signal-to-noise ratios there is indeed
some benefit to increasing γ in an effort to bring the objective function
closer to convexity. However, for larger SNR values, this strategy dimin-
ishes estimation accuracy, roughly doubling the MSE as γ increases from
its minimum to maximum values over the given ranges.

Example 3.1 demonstrates that it is possible for the solution to a non-
convex penalized regression model to outperform the solution from a con-
vex model. One reason this happens is that the solutions are sparse: al-
though Q(β) may not be convex over the entire p-dimensional parameter
space (i.e., globally convex), it is still convex on many lower-dimensional
spaces. If these lower-dimensional spaces contain the solution of interest,
then the existence of other local minima in much higher dimensions may
not be relevant. We refer to this concept as local convexity.

Recall the conditions for global convexity: γ must be greater than
1/c∗ for MCP and 1 + 1/c∗ for SCAD, where c∗ denoted the minimum
eigenvalue of XTX/n. A straightforward modification is to include only
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FIGURE 3.5
MSE for MCP and SCAD at various γ values across a range of SNR
levels, as described in Example 3.1.

the covariates with nonzero coefficients (the covariates which are “active”
in the model) in the calculation of c∗. Note that neither γ nor X change
with λ. What does vary with λ is the set of active covariates; generally
speaking, this will increase as λ decreases (with correlated/collinear data,
however, exceptions are possible). Thus, local convexity of the objective
function will not be an issue for large λ, but may cease to hold as λ is
lowered past some critical value λ∗.

Specifically, let β̂(λ) denote the minimizer of (3.4) for a certain

value of λ, A(λ) = {j : β̂j(λ) ̸= 0} denote the active set of covari-
ates, U(λ) = A(λ) ∪ A(λ−) denote the set of covariates that are either
currently active given a value λ or that will become active imminently
upon the lowering of λ by an infinitesimal amount, and let XU(λ) denote
the design matrix formed from only those covariates for which j ∈ U(λ),
with c∗(λ) denoting the minimum eigenvalue of XT

U(λ)XU(λ)/n Now, let

λ∗ = inf{λ : γ > 1/c∗(λ)} for MCP

and
λ∗ = inf{λ : γ > 1 + 1/c∗(λ)} for SCAD.

We may then say that the objective function is locally convex over the
interval λ ∈ (∞, λ∗). Because c∗(λ) changes only when the composition
of U(λ) changes, λ∗ must be a value of λ for which A(λ) ̸= A(λ−).

Note that λ∗ does not involve any unknown parameters, and there-
fore can be computed and used in practice as a useful diagnostic to
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indicate which regions of the solution paths produce stable, well-defined
estimates and which regions may suffer from multiple local minima and
discontinuous paths.

The practical benefit of these diagnostics can be seen in Figure 3.6,
which depicts an example of an MCP coefficient path from simulated
data in which n = 20 and p = 50. As is readily apparent, solutions
are smooth and well behaved in the unshaded, locally convex region,
but suffer from an abrupt, discontinuous jump at λ∗. The region of the
coefficient path that is not locally convex is shaded by default when the
plot.ncvreg function is used with nonconvex penalties, but can be shut
off using shade=FALSE.
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FIGURE 3.6
Left: An example MCP coefficient path for simulated data where p > n.
The shaded region is the region in which the objective function is not
locally convex. Right: Values of the objective function along the line
segment joining the solutions on either side of λ∗.

The right side of Figure 3.6 provides a more detailed look at the
discontinuous transition occurring at λ∗. It plots the objective function
along the line segment joining β1, the solution just to the left of λ∗∗ and
β2, the solution just to the right of λ∗. When λ = 0.42, β1 clearly min-
imizes the objective function and when λ = 0.11, β2 clearly minimizes
the objective function, but for λ ≈ 0.25, the objective function is very
broad and flat, indicating substantial uncertainty about which solution
is preferable.

In conclusion, the convexity of the objective function and the pos-
sibility of multiple local minima is certainly an important issue to be
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aware of and to monitor in practice with local convexity diagnostics.
However, although multiple minima are possible, they are not always a
relevant concern for models with nonconvex penalties. In particular, as
Figure 3.6 illustrates, there is typically a range of λ values over which
optimization is well-behaved. Furthermore, nonconvex penalties often
outperform convex penalties, especially when the signal-to-noise ratio is
high. In Chapter 4, we return to this and discuss another method for
improving the stability/convexity of a model besides adjusting γ.

3.7 Case study: Breast cancer gene expression study
(revisited)

In this section, we revisit the BRCA1 gene expression study originally
discussed in Section 2.7. First, we consider an adaptive lasso model.
Recall that the adaptive lasso requires an initial estimator. Here, we use
the lasso estimates with λ chosen according to BIC:

fit <- ncvreg(X, y, penalty='lasso')

b <- coef(fit, which=which.min(BIC(fit)))[-1]

In the above, we used ncvreg for fitting due to its compatibility with
R’s BIC built-in function. Selecting λ according to cross-validation would
be another reasonable way of choosing an initial estimator. Once we have
the initial estimator, we can fit an adaptive lasso model as follows:

w <- abs(b)^(-1) # Calculate weights

w <- pmin(w, 1e10) # cv.glmnet does not allow infinite weights

cvfit <- cv.glmnet(X, y, penalty.factor=w)

Figure 3.7 illustrates the output of plot(cvfit) for the adaptive
lasso. The cross-validation procedure indicates that a model containing
20 genes (out of the initial 17,322) is optimal. It should be noted that the
above application of cross-validation, while reasonable for the selection
of λ, does not estimate the cross-validation error in an unbiased manner.
The reason is that the left-out fold is not truly external to the fitting
procedure, as it was used to obtain an initial estimator. As a result, the
estimate of out-of-sample prediction error is biased.

For example, Figure 3.7 indicates that the adaptive lasso attains a
minimum CV error of 0.18; in Section 2.7, we saw that the lasso had
a minimum CV error of 0.20 (Figure 2.10). However, it does not follow
from these results that the adaptive lasso is necessarily outperforming
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FIGURE 3.7
Cross-validation for the adaptive lasso, applied to the BRCA1 gene ex-
pression study, with (BIC) lasso as the initial estimator. As discussed
in the text, the estimates of cross-validation error are slightly over-
optimistic for the adaptive lasso unless the initial estimate is cross-
validated as well.

the lasso here, as the decrease could be due to bias. To obtain an (ap-
proximately) unbiased estimate of CV error, one must cross-validate the
entire procedure, including the initial estimate (the hdrm package pro-
vides a function, cv.adaptive lasso for this). In doing so, the CV error
for adaptive lasso increases to 0.23, indicating that, if anything, it per-
forms slightly worse than the lasso in this example in terms of prediction
accuracy. Unfortunately, while existing software packages can be used to
fit adaptive lasso models, there are not currently any comprehensive soft-
ware packages for the adaptive lasso (that we are aware of) that carry
out full cross-validation.

The other methods discussed in this Chapter, MCP and SCAD,
achieve the adaptive lasso’s goal of reducing the bias associated with
the lasso, but do so in a single procedure – as opposed to the adaptive
lasso’s two-step procedure – and thus prove more amenable to carrying
out inference concerning predictive accuracy using cross-validation. Fig-
ure 3.8 presents two MCP-penalized regression models fit to the BRCA1
data, one with γ = 3 and the other with γ = 7. The models were fit with
ncvreg using the following commands:

cvfit3 <- cv.ncvreg(X, y) # gamma=3 is default

cvfit7 <- cv.ncvreg(X, y, gamma=7)
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and the plots made with

plot(cvfit3$fit, log.l=TRUE)

plot(cvfit3) # And so on for cvfit7
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FIGURE 3.8
MCP models fit to the BRCA1 gene expression study. Top: γ = 3. Bot-
tom: γ = 7.

As the figure indicates, the cross-validation error is minimized for
both models at λ ≈ e−3. Also, for both models, the minimum error is
CV = 0.21; very close to, although slightly larger than the CV = 0.20
achieved by the lasso. However, the two models select very different
numbers of variables, both compared to each other and compared to
the lasso, which selected 96 nonzero coefficients. This basic summary
information can be displayed using the summary function:
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> summary(cvfit3)

MCP-penalized linear regression with n=536, p=17322

At minimum cross-validation error (lambda=0.0464):

-------------------------------------------------

Nonzero coefficients: 38

Cross-validation error (deviance): 0.21

R-squared: 0.58

Signal-to-noise ratio: 1.39

Scale estimate (sigma): 0.461

> summary(cvfit7)

MCP-penalized linear regression with n=536, p=17322

At minimum cross-validation error (lambda=0.0492):

-------------------------------------------------

Nonzero coefficients: 52

Cross-validation error (deviance): 0.21

R-squared: 0.59

Signal-to-noise ratio: 1.45

Scale estimate (sigma): 0.455

The most striking difference between the two solution paths is that
for MCP with γ = 3, the the optimal solution occurs in the region that is
not locally convex. Indeed, when γ = 3, the objective function encounters
problems with nonconvexity quite early in the solution path, making a
discontinuous transition between local minima at λ ≈ e−1.5. On the
other hand, while the objective function for MCP with γ = 7 eventually
becomes locally non-convex, this is not until after the optimal solution
has been reached. As this is real data, there is no gold standard for
determining which of these two solutions is superior. In this example the
authors prefer the γ = 7 solution, as we are somewhat concerned about
the numerical stability of the γ = 3 solution; we would not necessarily
expect everyone to agree with us on this point, however.

Finally, let us fit a SCAD-penalized regression model to this data
using the following code; similar to the MCP case, we set γ = 8 here to
increase the stability of the solution path:

> cvfit <- cv.ncvreg(X, y, gamma=8, penalty='SCAD')

> summary(cvfit)

SCAD-penalized linear regression with n=536, p=17322

At minimum cross-validation error (lambda=0.0478):

-------------------------------------------------

Nonzero coefficients: 79

Cross-validation error (deviance): 0.20

R-squared: 0.61

Signal-to-noise ratio: 1.53

Scale estimate (sigma): 0.447
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FIGURE 3.9
SCAD-penalized model fit to the BRCA1 gene expression study with
γ = 8.

The SCAD solution path is more lasso-like than that of the MCP
models, as one would expect from the fact that the SCAD and lasso
penalties are more similar. Not only are the solution paths in Figure 3.9
and Figure 2.10 visually similar, but they achieve the same CV error
(CV = 0.20) and the sparsity of the SCAD model (79 nonzero coeffi-
cients) is closer to lasso (96 nonzero coefficients) than it is to MCP (52
nonzero coefficients).

The results seen here are fairly representative, in our experience, of
what one sees when applying lasso, MCP, and SCAD models to real
data: prediction performance (as estimated by cross-validation) is typ-
ically similar, but there can be substantial differences in terms of the
estimates themselves. Thus, if one cares solely about predictive accu-
racy, nonconvex methods do not typically offer significant advantages.
However, if one is concerned with finding a highly sparse model that still
offers optimal or nearly optimal predictive accuracy, or if estimation bias
for the selected coefficients is an overriding concern, MCP and SCAD
are attractive alternatives to the lasso.
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3.8 *Convergence of coordinate descent algorithms

Consider the minimization problem

min

f(x1, . . . ,xp) = f0(x1, . . . ,xp) +

p∑
j=1

fj(xj)

 (3.21)

for some f0 : Rm1+···mp 7→ R∪{∞} and fj : Rmj 7→ R∪{∞}, j = 1, . . . , p.
Here mj ≥ 1 are integers. Let m = m1 + · · · + mp. Clearly, the lasso
and concave penalized criterions for linear regression discussed above are
special cases of (3.21) with f0 being the least squares loss function, fj
the penalty function, and m1 = · · ·mp = 1. The formulation (3.21) also
includes the group selection methods described in later chapters.

For any function h that maps Rm into R ∪ {∞}, denote its effective
domain by

domh = {x : h(x) <∞}.

A general blockwise coordinate descent algorithm for finding a local
solution to (3.21) is as follows.

� Initialization: Choose any x0 = (x0
1, . . . ,x

0
p) ∈ domf .

� Iteration step s + 1: Given xs = (xs
1, . . . ,x

s
p) ∈ domf , choose an

index j and compute a new iterate

xs+1 = (xs+1
1 , . . . ,xs+1

p )

with

xs+1
j ∈ argmin

xj

f(xs
1, . . . ,x

s
j−1,xj ,x

s
j+1, . . . ,x

s
p),

xs+1
k = xs

j , k ̸= j.

To ensure convergence, each coordinate block needs to be visited
sufficiently often. A general rule is the essential cyclic rule.

Essential cyclic rule. There exists a constant T ≥ p such that every
index j ∈ {1, . . . , p} is chosen at least once between the sth iteration and
the (s+ T − 1)th iteration, for all s.

An important special case is the cyclic rule.
Cyclic rule. T = p. Choose j = k at iterations k, k + p, k + 2p, . . .,

for k = 1, . . . , p. This is what is implemented in the R packages glmnet
and ncvreg.

A set of sufficient conditions are given below that guarantee that
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the sequence of solutions from (blockwise) coordinate descent algorithm
converges to a coordinatewise minimum point or a local minimum point.

A point z ∈ Rm is a coordinatewise minimum point of h : Rm 7→ R
if z ∈ domh and

h(z+ (0, . . . ,dj , . . . , 0)) ≥ h(z), for every dj ∈ Rmj , j = 1, . . . , p.

It is a local minimum (stationary point) of h if z ∈ domh and

h′(z;d) ≥ 0, for every d,

where h′(z;d) is the lower directional derivative of h at z in the direction
d defined as

h′(x;d) = lim inf
t↓0

h(x+ td)− h(x)
t

.

The following definitions will be useful in stating the convergence
property of the blockwise coordinate descent algorithm.

� h is lower semi-continuous (lsc) at x0 if

lim inf
x→x0

h(x) ≥ h(x0).

For example, if A is an open set, then the indicator function 1{x ∈
A} is lsc.

� A function h is hemivariate if h is not constant on any line segment
in domh. The SCAD penalty and MCP are not hemivariate, since
they are constant at the tails.

� h is quasiconvex if

h(αx+ (1− α)y) ≤ max{h(x), h(y)}.

Clearly, any convex function is quasiconvex. More generally, a
univariate function f(x) for which there exists a x0 ∈ R ∪ {∞}
such that f decreases on (−∞, x0] and increases on [x0,∞) is
quasiconvex. Important examples of such functions include SCAD
penalty and MCP.

Theorem 3.1. Consider the minimization problem (3.21). Suppose

(B1) f0 is continuous on domf0;

(B2) The function xj 7→ f(·,xj , · · · ) is quasiconvex and hemivari-
ate for j = 1, . . . , p;

(B3) f1, . . . , fp are lsc;
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(B4) {x : f(x) ≤ f(x0)} is bounded, where x0 is the initial value
that starts the BCD algorithm.

Also assume one of the following conditions on domf0:

(C1) domf0 is open and f0 tends to ∞ at boundary of domf0;

(C2) domf0 = Y1 × · · · × Yp for some Yj ⊂ Rpj , j = 1, . . . , p.

Then, the sequence {xs} generated by the BCD method using the es-
sentially cyclic rule is defined, bounded, and every cluster point is a
coordinatewise minimum point of f .

A function h is regular at z ∈ domh if for any d = (d1, . . . ,dp) such
that

h′(z; (0, . . . ,dj , . . . , 0)) ≥ 0, j = 1, . . . , p,

it holds that
h′(z;d) ≥ 0.

It can be seen that any differentiable function h is regular since

h′(x;d) = ∇h(x)Td =

p∑
j=1

∂h

∂xj
dj =

p∑
j=1

h′(x; (0, . . . ,dj , . . . , 0)).

For a regular function, a coordinate-wise minimum point is also a local
minimum point.

Theorem 3.2. Suppose that domf0 is open and f0 is differentiable on
domf0. Then f in (3.21) is regular at every x ∈ domf . Therefore, if the
conditions of Theorem 3.1 also hold, then a coordinate-wise minimum
point is also a local minimum point.

Proof. If x ∈ domf , then z ∈ domf0. For any d = (d1, . . . ,dp), suppose

f ′(x; (0, . . . ,dj , . . . , 0)) ≥ 0.

Then

f ′(z;d) = ∇f0(x)Td+ lim inf
t↓0

p∑
j=1

[fj(xj + tdj)− fj(xj)]/t

= ∇f0(x)Td+

p∑
j=1

lim inf
t↓0

[fj(xj + tdj)− fj(xj)]/t

= ∇f0(x)Td+

p∑
j=1

f ′j(xj ;dj)

=

p∑
j=1

f ′(x; (0, . . . ,dj , . . . , 0))

≥ 0.
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Thus f is regular. The second conclusion now follows from Theorem
3.1.

Bibliographical notes

This section will include the bibliographical notes on the materials pre-
sented in this chapter.

Exercises

3.1. Two-stage adaptive lasso. In Figure 3.2, solution paths for a sim-
ulated example were given for the adaptive lasso using the pathwise
approach to selecting weights. Construct the corresponding figure for
the two-stage adaptive lasso and comment on how it differs from both
the pathwise adaptive lasso and the original lasso paths. Describe your
approach and your initial estimator.

3.2. Thresholding for MCP and SCAD.

(a) Show that in the orthonormal case, the MCP estimates are given
by (3.9).

(b) Show that in the orthonormal case, the SCAD estimates are given
by (3.10).

3.3. Degrees of freedom for MCP (orthonormal case).

(a) Using Stein’s lemma (see Exercise 2.9), derive the degrees of free-
dom for MCP in the setting where the features are orthonormal.

(b) Suppose γ = 3; comment on the degrees of freedom for MCP
compared to the lasso.

3.4. Sparsity and the bridge penalty. Consider the objective function for
the bridge penalty in the orthonormal/univariate setting:

Q(β) =
1

2
|z − β|2 + λ|β|γ , 0 < γ < 1.

You may wish to plot this objective function in order to better under-
stand this problem.
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(a) Show that for all values of λ, β = 0 is a local minimum.

(b) Show that Q is minimized at β = 0 if and only if

|z| < 2− γ
(2− 2γ)(1−γ)/(2−γ)

λ1/(2−γ).

3.5. MCP as scale mixture of normal distributions. Prove (3.16).

3.6. Convexity of MCP and SCAD objective functions

(a) Show that the objective function for MCP is strictly convex if
γ > 1/cmin.

(b) Show that the objective function for SCAD is strictly convex if
γ > 1 + 1/cmin.

3.7. Simulation comparing ridge regression, forward selection, the lasso,
MCP, and SCAD. For this simulation, revisit the simulation described in
Exercise 2.11, but now add MCP and SCAD as methods to be compared.
Based on your results, comment on the situations in which you would
expect each method to be the best approach (keeping in mind that some
methods may never be the best approach).

3.8. Signal to noise ratios (SNRs) for various simulation settings.

(a) In Exercise 3.7, what is the SNR for each of the four simulation
settings?

(b) Suppose, instead of being normally distributed, Xij ∼ Unif(0, 1).
Now what is the SNR?

(c) Suppose that Xij ∼ N(0, 1), but that the features are not inde-
pendent. Specifically, suppose a compound symmetric correlation
structure with Cor(xj ,xk) = 0.5 for all j and k. How does this
affect the SNR?

3.9. Exponential penalty. Consider the following function, defined on
[0,∞):

p(θ|λ, τ) = λ2

τ

{
1− exp

(
−τθ
λ

)}
.

This function forms the basis of the exponential penalty, with tuning
parameters λ > 0 and 0 < τ < 1. For the plots in (a) and (b), use λ = 1
and τ = 0.5.

(a) Plot the penalty function p(|θ|) over the range (−λ/τ, λ/τ).
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(b) Derive p′(|θ|) and plot it over the range (0, λ/τ).

(c) On the basis of the plots in (a) and (b), comment on what you
think estimates based on this penalty will look like (i.e., will they
be sparse, will they resemble MCP, lasso, or ridge, etc.).

(d) Write an R function implementing a coordinate descent algorithm
for the exponential penalty using the LLA approximation. For the
sake of simplicity, you may assume that X has been standardized
in advance. (Note: We recommend doing Exercise 2.6 prior to
attempting part (d) of this problem.)

3.10. Exponential penalty, continued. Part (d) of Exercise 3.9 asks you to
implement a coordinate descent algorithm for the exponential penalty for
a single value of λ and assuming a standardized feature matrix. Extend
your algorithm so that it (1) fits the entire coefficient path and (2)
internally standardizes X and returns the coefficients on the original
scale.

3.11. Analysis of the carbotax data using MCP. Analyze the carbotax
data from Section 2.8 using MCP (γ = 3). Adjust for the clinical vari-
ables Day and Treatment as was done in Section 2.8. When comparing
lasso and MCP models, use the same fold assignments for each model to
obtain λCV.

(a) Make a table comparing the models selected by lasso and MCP.
For each model, what is the maximum R2 achieved, and how many
genes are selected?

(b) Identify the gene that enters the lasso/MCPmodel first. Comment
on the coefficient for that gene and how its coefficient path differs
between the lasso and MCP models.
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Stability and ridge-type penalties

In Chapter 3, we discussed methods for reducing the bias of lasso esti-
mates. In this chapter, we discuss methods for doing the opposite: intro-
ducing ridge penalties in order to reduce the variance of lasso estimates
at the cost of further increasing their bias. As we saw in Chapter 1, there
is typically some degree of shrinkage that may be introduced for which
the gains of variance reduction outweigh the cost of increased bias to
produce more accurate estimates and predictions.

SHOULD INCLUDE SOMETHING ABOUT DEGREES OF FREE-
DOM FOR ELASTIC NET

4.1 Elastic Net

As discussed in Section 2.1.2, lasso solutions are not always unique.
Example 2.1 presented a situation where two covariates were perfectly
correlated, and we saw that any solution such that β̂1 + β̂2 = 1 − λ
and both β̂1 and β̂2 were positive was a solution in terms of minimizing
the objective function. This happens because the absolute value penalty,
while convex, is not strictly convex. In practice, the consequence is that
if one solves for β̂ using a coordinate descent algorithm (Section 2.4),
one of β1 or β2 will be arbitrarily chosen: whichever one happens to be
updated first. This is clearly unsatisfactory.

In contrast, the ridge penalty is strictly convex, and always produces
a unique solution (Theorem 1.1). Consider, then, the following penalty,
known as the elastic net penalty:

Pλ(β) = λ1∥β∥1 +
λ2
2
∥β∥22. (4.1)

Here, the penalty consists of two terms, a lasso term plus a ridge term.
Because the ridge penalty is strictly convex, the solution β̂ is unique.

Example 4.1. To see how this works, let us revisit Example 2.1,
which consisted of two observations: (y1, x11, x12) = (1, 1, 1) and

101
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(y2, x21, x22) = (−1,−1,−1). Whereas the lasso penalty admitted in-
finitely many solutions, the elastic net penalty produces a single solution
for any given value of λ:{

β̂1 = β̂2 = 0 if λ1 ≥ 1,

β̂1 = β̂2 = 1−λ1

2+λ2
if λ1 < 1.

The fact that this minimizes the elastic net objective function can be
verified by checking against the KKT conditions (4.3).

Of particular note in the above example is that, regardless of λ1 and
λ2, β̂1 is always equal to β̂2. This is reasonable, given that x1 = x2.
Indeed, this is a general property of the elastic net: whenever xj = xk,

β̂j = β̂k (Exercise 4.1).
Example 4.1 also illustrates that the elastic net retains properties of

both the lasso and ridge regression methods. From the lasso, it inherits
sparsity – in particular, β = 0 if λ1 > 1. From ridge regression, the
elastic net inherits the ability to always produce a unique solution as
well as ridge regression’s property of proportional shrinkage. In the lasso
example (2.1), one possible solution was β̂1 = β̂2 = (1 − λ1)/2. For the
elastic net, the 2 in the denominator is replaced by 2 + λ2 in a manner
analogous to equation (1.19).

A common reparameterization of the elastic net is to express the
regularization parameters in terms of λ, which controls the overall degree
of regularization, and α, which controls the balance between the lasso
and ridge penalties:

λ1 = αλ

λ2 = (1− α)λ.
(4.2)

This reparameterization is useful in practice, as it allows one to fix α
and then select a single tuning parameter λ, which is considerably more
straightforward than attempting to select λ1 and λ2 separately.

4.1.1 Orthonormal solutions

As with many other penalties we have considered, the elastic net has
a closed form solution in the orthonormal case. Considering this special
case lends considerable insight into the nature of the penalized regression
method and in addition, proves useful for optimization via the coordinate
descent algorithm.

The KKT conditions, or penalized likelihood equations, are slightly
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modified from the equations for the lasso (2.5):{
xT
j (y −Xβ̂)/n− λ2β̂j = λ1sign(β̂j), β̂j ̸= 0

|xT
j (y −Xβ̂)/n| ≤ λ1, β̂j = 0.

(4.3)

Simplifying these conditions for the orthonormal case yields{
zj − β̂j − λ2β̂j = λ1sign(β̂j), β̂j ̸= 0

|zj | ≤ λ1, β̂j = 0,
(4.4)

where zj = xT
j y/n. These equations can be further simplified by writing

them in terms of the soft-thresholding operator (2.14):

β̂j =
S(zj |λ1)
1 + λ2

. (4.5)

In the orthonormal case, then, the elastic net solutions are simply the
lasso solutions divided by 1 + λ2. In other words, the additional ridge
penalty has the same effect on the lasso as the ridge penalty itself has
on ordinary least squares regression: it provides shrinkage.

As with ridge regression itself, shrinking the coefficients towards zero
increases bias, but reduces variance. Since this involves drawbacks as well
as advantages, adding a ridge penalty is not always universally beneficial,
as the bias can dominate the variance. Still, as with ridge regression itself,
it is typically the case that a profitable compromise can be reached by
incorporating some (possibly small) ridge term into the penalty.

4.1.2 Grouping effect

Example 4.1 is an extreme example of a property possessed by the elas-
tic net known as the grouping effect. The property states that highly
correlated features will have similar estimated coefficients, which seems
intuitively reasonable. The property can be described formally, in the
sense that an upper bound involving the correlation between xj and xk

can be placed on |β̂j − β̂k| (Exercise 4.2), with the bound going to zero
as the correlation ρjk → 1.

Example 4.1 is a toy example involving identical features to illustrate
the basic properties of the elastic net. However, even if a data set does not
contain identical variables, data sets – particularly high dimensional ones
– often contain highly correlated predictors. The shrinkage and grouping
effects produced by the elastic net are an effective way of dealing with
these correlated predictors, as we will see in the next example.

Example 4.2. For this example, we will set n = 50 and p = 100. All
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features xj will follow standard Gaussian distributions in the marginal
sense, but we introduce correlation between the features in one of two
ways:

� Compound symmetric: All features have the same pairwise corre-
lation ρ.

� Block diagonal: The 100 features are partitioned into blocks of 5
features each, with a pairwise correlation of ρ between features in
a block, but features from separate blocks are independent.

In the generating model, we will set β1 = β2 = · · · = β5 = 0.5 and β6 =
β7 = · · · = β100 = 0. Note that in the block diagonal case, this introduces
a grouping property: correlated features have identical coefficients. In
the compound symmetric case, on the other hand, correlation between
features does not tell us anything about their corresponding coefficients.

For the elastic net penalty, for the sake of simplicity we set λ1 = λ2 =
λ. For each independent replication of this simulation experiment, we
select λ for lasso and elastic net by generating an independent validation
set also of size n and select λ for that replication as the value which
minimizes the prediction error on the validation set. Figure 4.1 shows
the results of this simulation in terms of the MSE of lasso and elastic
net.
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FIGURE 4.1
MSE of lasso and elastic net for the simulation study of Example 4.2.
Left: Compound symmetic case. Right: Block diagonal case.

Figure 4.1 demonstrates that when the correlation between features
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is not large, there is often little difference between the lasso and elastic
net estimators in terms of their estimation accuracy. Indeed, when cor-
relation is near zero, the lasso is typically more accurate, although as we
will see in Section 4.2, this depends on β as well. When the correlation
between features is large, however, the elastic net has an advantage over
the lasso. The advantage is much more pronounced in the block diagonal
case (right side), where the coefficients have a grouping property.

In practice, the grouping effect is often one of the strongest motiva-
tions for applying an elastic net penalty. For example, in gene expres-
sion studies, genes that have similar functions, or that work together
in a pathway to accomplish a certain function, are often correlated. It
is often reasonable to assume, then, that if the function is relevant to
the response we are analyzing, the coefficients will be similar across the
correlated group.

It is worth pointing out, however, that grouping does not always
hold. For example, in a genetic association study, it is certainly quite
possible for two nearby variants to be highly correlated in their inheri-
tance patterns, but for one variant to be harmless and the other to be
highly deleterious. Nevertheless, in such a case, it is often quite difficult
to determine which of two highly correlated features is the causative fea-
ture, and the elastic net, which splits the estimated signal between the
correlated features, offers a reasonable compromise.

4.2 Combining ridge and nonconvex penalties

The motivation for adding a ridge penalty to the lasso penalty presented
in Section 4.1 also applies to the nonconvex MCP and SCAD penalties
from Chapter 3. In fact, the motivation is perhaps even stronger in this
case. As we saw in Chapter 3, the objective functions for MCP and SCAD
may fail to be convex and present multiple local minima, which leads
to difficulty in optimization and decreased numerical stability. Adding a
strictly convex ridge penalty can often substantially stabilize the problem
by making the objective function more convex.

The addition of a ridge penalty has a similar shrinkage effect on MCP
and SCAD as it does on lasso-penalized models. In particular, for MCP
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in the orthonormal case,

β̂j =


zj

1 + λ2
|zj | > γλ1(1 + λ2)

S(zj |λ1)
1− 1

γ + λ2
|zj | ≤ γλ1(1 + λ2).

(4.6)

From this solution, we can see that the shrinkage role played by λ2 is, in a
sense, the opposite of the bias reduction role played by γ. While dividing
by 1 − γ−1 inflates the value of S(zj |λ1), dividing by 1 + λ2 shrinks it.
When both are present in the model, the orthonormal solution is the
soft-thresholding solution divided by 1 − γ−1 + λ2, which could either
shrink or inflate S(zj |λ1) depending on the balance between γ and λ2.
It should be noted, however, that the terms are not entirely redundant;
while they cancel each other out in the denominator of the bottom line of
(4.6), they do not cancel out elsewhere, and in particular, they can have
rather different effects in the presence of correlation among the features.

A similar phenomenon happens for SCAD, although its orthonormal
solutions are somewhat more complex:

β̂j =



zj
1 + λ2

zj > γλ1(1 + λ2)

S(zj |γλ1/(γ − 1))

1− 1
γ−1 + λ2

λ1(2 + λ2) < zj ≤ γλ1(1 + λ2),

S(zj |λ1)
1 + λ2

zj ≤ λ1(2 + λ2).

(4.7)

Like the elastic net, the regularization parameters for the ridge-stabilized
versions of MCP and SCAD are often expressed in terms of λ and α, as
in (4.2).

We close this section with two examples comparing the estimation
accuracy of lasso, MCP, the elastic net, and what we will abbreviate
“MNet”, the MCP version of the elastic net (i.e., a penalty that consists
of MCP + Ridge).

Example 4.3. Suppose all covariates {xj} follow independent standard
Gaussian distributions, and that the outcome y consists of Xβ plus an
error drawn from the standard Gaussian distribution. We will investigate
the estimation accuracy for this situation via simulation study. For each
independently generated set of data set, let n = 100 and p = 500, with 12
nonzero coefficients equal to s and the remaining 488 coefficients equal to
zero. We will consider varying the signal strength s between 0.1 and 1.1.
For all methods, tuning parameters are selected on the basis of mean-
squared prediction error on an independent validation data set also of
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size n = 100. For lasso and MCP, only one tuning parameter (λ) was
selected (for MCP, γ = 3 was fixed); for the Enet and Mnet estimators,
both λ and α were selected by external validation.
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FIGURE 4.2
Left: Estimation mean squared error, relative to the lasso, for MCP
and various fixed-α versions of the Mnet estimator for the simulation
described in Example 4.3. Right: Estimation mean squared error, relative
to the lasso, for MCP, Enet, and Mnet, with α selected by external
validation for both Enet and Mnet.

Figure 4.2 presents the results of the simulation, as measured by mean
squared error (MSE) of each method relative to that of the lasso. The left
side presents results for various fixed-α versions of the Mnet estimator.
All methods behave rather similarly when s is small, as all models end
up with estimates of β̂ ≈ 0 in these settings. As one might expect,
a modest ridge penalty is beneficial in the medium-signal settings, with
α = 0.5 achieving the highest accuracy when s = 0.5. As signal increases,
however, the downward bias of ridge and lasso play a larger role, and
MCP becomes the most accurate estimator along with the α = 0.9 Mnet
estimator, which is similar to MCP.

The right side of the figure compares lasso and MCP with elastic
net and Mnet, where the latter two have used external validation to
select both λ and α. Here, there is little difference between the lasso and
elastic net estimators, as we might have expected based on the results of
Example 4.2. In particular, when s is large the two are virtually identical
due, in part, to the fact that α is typically selected to be ≈ 1 for Enet
when s is large. MCP and Mnet are similar to lasso and Enet when s is
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small, but substantially outperform the lasso and elastic net when the
signal is increased.

In summary, (a) MCP is typically no better than the lasso, and may
in fact be slightly worse, when the amount of signal is small, and (b)
one can improve estimation accuracy by adding a ridge penalty, but the
gains are not particularly dramatic when the features are independent
– in particular, there is little to no gain in adding a ridge penalty to
the lasso in the absence of correlation. In Example 4.4, we examine how
these conclusions are affected by the presence of correlation between the
features.

Example 4.4. This example is essentially identical to Example 4.3, ex-
cept that the features are correlated. In particular, all covariates {xj}
still follow a standard Gaussian distribution marginally, but are now
correlated with a common (compound symmetric) correlation ρ = 0.7
between any two covariates. This is a somewhat extreme amount of cor-
relation between features, but clearly illustrates the effect of correlation
on the relative performance of the methods.
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FIGURE 4.3
Left: Estimation mean squared error, relative to the lasso, for MCP
and various fixed-α versions of the Mnet estimator for the simulation
described in Example 4.4. Right: Estimation mean squared error, relative
to the lasso, for MCP, Enet, and Mnet, with α selected by external
validation for both Enet and Mnet.

Figure 4.3 differs from Figure 4.2 in several interesting aspects. One is
that the benefits of shrinkage are much more pronounced in the presence
of correlation. For example, while MCP was never far from the best
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estimator in the uncorrelated case, it is one of the worst methods for
most signal strengths in the correlated case, only outperforming the lasso
when s = 1.1.

The other salient difference is that there is a much larger difference
between Mnet and MCP in the correlated case than in the uncorrelated
case. Whereas the two approaches were generally similar in Example 4.3,
here Mnet outperforms MCP rather dramatically. In particular, at s ≈ 1,
Mnet is approximately twice as efficient (its MSE is half as large) as
MCP, lasso, and the elastic net, which all perform similarly in terms of
MSE at that setting.

Because the relative performance of the Mnet (MCP + ridge) esti-
mator depends considerably on the strength of signal and degree of cor-
relation between features, it is difficult to rely on any particular value
of α. In practice, it is advisable to try out several values of α and use
cross-validation to guide its selection.

Furthermore, because MCP can suffer from high variance, the addi-
tion of a ridge penalty can often greatly stabilize the estimate. This is
true in the sense of reducing variance and also in the numerical sense
of stable solutions to the optimization problem, as we will see in the
following section. Adjusting α to stabilize MCP in this way is often a
more fruitful approach than adjusting γ.

Finally, although we focused on MCP + ridge in these two examples,
similar statements would apply to the ridge-stabilized SCAD estimator,
although because SCAD is more similar to the lasso, the effect of ridge
stabilization is not as extreme as for MCP.

4.3 Coordinate descent algorithm

The coordinate descent algorithms for all of the elastic net-type meth-
ods described in this chapter (Lasso + ridge, SCAD + ridge, MCP +
ridge) are very similar to the coordinate descent algorithms previously
described in Chapters 2 and 3. For all of these coordinate descent algo-
rithms, the only step that differs is the updating of btj . For the methods
of this chapter, that updating step is given by (4.5) for the elastic net,
(4.6) for MCP + ridge (“MNet”), and (4.7) for SCAD + ridge (“SNet”).

Before moving on, however, it is worth revisiting the convexity con-
siderations of Section 3.6 for the ridge-stabilized versions of MCP and
SCAD. In the orthogonal case, the objective function is strictly convex
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if

MCP: γ >
1

1 + λ2

SCAD: γ > 1 +
1

1 + λ2
.

Thus, as we increase the ridge penalty regularization parameter λ2, the
objective function becomes increasingly convex. Or, to put it differently,
by increasing λ2 we increase the range of γ values over which the objec-
tive function remains convex. In Section 3.6, we discussed increasing γ
to maintain the stability of the objective function and prevent discon-
tinuous jumps between local minima along the solution path. Here, we
see that another way to accomplish that same goal is by introducing a
ridge component. The case study of 4.4 will further illustrate this point
using the breast cancer data.

The corresponding equations for convexity in the general (non-
orthogonal) case are:

MCP: γ >
1

cmin + λ2

SCAD: γ > 1 +
1

cmin + λ2
.

The derivation of these convexity equations is left as Exercise 4.4.

4.4 Case study: Breast cancer gene expression study
(revisited)

To illustrate the performance of ridge-stabilizing penalties in practice, as
well as how to fit them using available software, we begin by revisiting
our running example involving breast cancer gene expression data. In
both glmnet and ncvreg, there is an alpha option that can be used
to control the balance between lasso and ridge penalties, as in (4.2). In
what follows, we will compare the following models in terms of their
predictive accuracy and number of features selected:

# Elastic net

cvfit1 <- cv.glmnet(X, y)

cvfit2 <- cv.glmnet(X, y, alpha=0.75)

cvfit3 <- cv.glmnet(X, y, alpha=0.5)

cvfit4 <- cv.glmnet(X, y, alpha=0.25)
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# Mnet

cvfit5 <- cv.ncvreg(X, y)

cvfit6 <- cv.ncvreg(X, y, alpha=0.75)

cvfit7 <- cv.ncvreg(X, y, alpha=0.5)

cvfit8 <- cv.ncvreg(X, y, alpha=0.25)

Table 4.1 contains the results of these models in terms of cross-
validated prediction accuracy as summarized by R̂2 (2.22) and the num-
ber of variables selected by each procedure. In this example, the overall
predictive accuracy for each approach is virtually identical across all the
values of α considered here. The solutions themselves, however, are quite
different. By increasing the proportion of the penalty allocated to the
ridge component, the number of variables selected goes up: the num-
ber of nonzero coefficients for the elastic net increased by 67% as we
dropped α from 1 to 0.25. A similar trend holds for Mnet, although not
as pronounced.

TABLE 4.1
Predictive accuracy (R̂2) and
number of variables selected for
the breast cancer data

Variables

R̂2 selected
Elastic Net
α = 1 0.60 49
α = 0.75 0.60 57
α = 0.5 0.60 63
α = 0.25 0.60 82

Mnet
α = 1 0.55 28
α = 0.75 0.56 27
α = 0.5 0.57 37
α = 0.25 0.58 35

These results are essentially consistent with Example 4.2, in which
the overall estimation accuracy of the lasso and elastic net were seen
to be similar in the absence of strong correlation. For the breast cancer
data, 99% of the pairwise correlations between genes were less than 0.4
in absolute value.

Nevertheless, it is worth noting that, as pointed out in Section 4.1,
the ridge component stabilizes the Mnet solutions in terms of reducing
concerns about local minima. As we first encountered in Section 3.7,
cross-validation selects a value of λ that lies within the locally convex
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portion of the MCP solution path. In that section, we addressed this
concern by increasing γ. In Figure 4.4, we see that a similar effect can
be achieved through the ridge penalty: as we decrease α, the locally
nonconvex region shrinks and eventually λ is selected to be within the
locally convex region.
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FIGURE 4.4
Mnet solution paths for the breast cancer data with different α val-
ues. The vertical dotted line represents the value of λ chosen by cross-
validation.

4.5 Case study: Rat eye data

The breast cancer data from the previous section was not particularly
highly correlated, nor did it suggest highly sparse solutions (≈ 50 or
more selected coefficients). As a contrast, we will also apply the methods
of this section to gene expression data gathered from the eye tissue of
120 twelve-week-old male rats. The goal of the study was to detect genes
whose expression patterns are related to that of the gene TRIM32, a gene
known to be linked to a genetic disorder called Bardet-Biedl Syndrome
(which, among other symptoms, leads to a number of problems with
vision and proper formation of the retina). In the study, attention was
restricted to the 5,000 genes with the largest variances in expression (on
the log scale). Thus, this data set has n = 120 and p = 5, 000. We applied
the same 8 models from the previous section to this data; the results are
presented in Table 4.2.

This data differs from the breast cancer data in two important ways.
First, the variables are considerably more highly correlated with each
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TABLE 4.2
Predictive accuracy (R̂2) and
number of variables selected for
the rat eye data

Variables

R̂2 selected
Elastic Net
α = 1 0.58 14
α = 0.75 0.57 18
α = 0.5 0.56 28
α = 0.25 0.56 46

Mnet
α = 1 0.46 9
α = 0.75 0.47 12
α = 0.5 0.50 13
α = 0.25 0.61 15

other: only 77% of the pairwise correlations are below 0.4 in absolute
value, and 8% of the correlations are above 0.6. Second, we are able
to identify accurate predictive models that include only a rather small
number of features – perhaps as few as 9.

As a consequence, the incorporation of a ridge penalty has a larger
impact in this setting than it did in the previous one, at least for
MCP. Although MCP had inferior predictive accuracy than the lasso
(R̂2 = 0.46, compared to R̂2 = 0.58), lowering α substantially increased
the predictive accuracy to R̂2 = 0.61. The incorporation of a ridge
penalty did not seem to benefit the lasso, although as usual it does affect
the estimates and produce a more dense (less sparse) model. The Mnet
estimator with α = 0.25 is particularly attractive here, as it achieves the
best prediction accuracy out of all models considered, and does so using
only 15 features (out of 5,000).

Exercises

4.1. Uniqueness of elastic net solutions. Show that if xj = xk, then

β̂j = β̂k for the elastic net estimator, provided that λ2 > 0. Hint: Use
the fact that the penalty function is strictly convex.

4.2. Grouping property for the elastic net. Let β̂ denote the elastic net
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solution; for the sake of simplicity, you may assume throughout that β̂j
and β̂k are both greater than 0.

(a) Show that

β̂j − β̂k =
1

nλ2
(xj − xk)

T r,

where r = y −Xβ̂ denotes the vector of residuals.

(b) Show that

|β̂j − β̂k| ≤
∥y∥
λ2
√
n

√
2(1− ρjk),

where ρjk denotes the sample correlation between xj and xk. Hint:
Apply the Cauchy-Schwarz inequality to the result from part (a).

4.3. Elastic net as reparameterized lasso. Show that the elastic net ob-
jective function

Q(β|X,y) = 1

2n
∥y −Xβ∥22 + λ1∥β∥1 +

λ2
2
∥β∥22

can be rewritten in the form of the lasso objective function, with

X∗ =

(
X√
nλ2I

)
and y∗ =

(
y
0

)
.

4.4. Convexity of objective functions for ridge + nonconvex penalties.
Let cmin denote the minimum eigenvalue of XTX/n.

(a) Show that, for the MNet estimator (MCP + ridge) in the or-
thonormal case, the objective function is strictly convex if γ >
1/(1 + λ2).

(b) Show that, for the SNet estimator (SCAD + ridge) in the or-
thonormal case, the objective function is strictly convex if γ >
1 + 1/(1 + λ2).

(c) Show that the objective function for the MNet estimator is strictly
convex if γ > 1/(cmin + λ2).

(d) Show that the objective function for the SNet estimator is strictly
convex if γ > 1 + 1/(cmin + λ2).

4.5. Analysis of Bardet-Biedl Syndrome data. In Section 4.5, we analyzed
gene expression data from the mammalian eye as it related to TRIM32,
a gene linked to Bardet-Biedl Syndrome. In that Section, we filtered the
features on the basis of variance. In this problem, we apply two different
strategies.
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(a) Analyze the unfiltered data (i.e., all 18,975 features) using an
appropriate model (elastic net or Mnet for some α) of your choice.
Justify your choice of model and summarize the results in terms
of predictive accuracy and number of selected features.

(b) Instead of using variance, filter instead on the basis of chromosome
(this information is included in fData for the mapped probes):
TRIM32 is on chromosome 5, so restrict your analysis to fea-
tures located on chromosome 5. Again, decide upon an appropri-
ate model, justify your choice, and summarize the results.

(c) For the Bardet-Biedl Syndrome data, you have now seen three
analyses: unfiltered, filtered on the basis of variance, and filtered
on the basis of biological annotation (chromosome). On the basis
of these three analyses, comment on what you see as the poten-
tial advantages and disadvantages of filtering out certain features
prior to analysis.





5

Theoretical results

There is a rather large body of literature concerning theoretical results
for high-dimensional penalized regression, far more than can be ade-
quately summarized in a single chapter. Our goal for this chapter is to
provide an introduction to these results, starting with the simplest case
of orthonormal predictors and finishing with the p > n case, as well as to
convey an overview of the most important theoretical results. Although
it is possible to apply penalized regression methods without understand-
ing these results, a basic appreciation of the theoretical properties of the
methods we have discussed in Chapters 1 - 4 is often quite helpful in
understanding why these estimators behave they way they do. Readers
interested only in the applied aspects of penalized regression may wish
to skip the proofs, but we would recommend that everyone at least read
through the main results, as some results are used to derive inferential
approaches in Chapters 6 - 9.

Throughout this chapter, we will let β̂ denote the estimator in
question and β∗ denote the (unknown) true value of β. We will let
S = {j : β∗

j ̸= 0} denote the set of nonzero coefficients (i.e., the sparse
set), with βS and XS the corresponding subvector and submatrix. Sim-
ilarly, we will let N = {j : β∗

j = 0} denote the set of “null” coefficients
equal to zero.

5.1 Introduction

There are three main categories of theoretical results, concerning three
desirable qualities we would like our estimator to possess:

� Prediction The model produces accurate predictions. Specifi-
cally, the mean squared prediction error,

1

n
∥Xβ̂ −Xβ∗∥2,

is small.

117
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� Estimation The model produces accurate estimates. Specifically,
the mean squared (estimation) error,

∥β̂ − β∗∥2,

is small.

� Selection The method accurately identifies the important fea-
tures. Specifically, there is a high probability that

sign(β̂j) = sign(β∗
j )

for all j.

In general, we would like the methods we use to have all three qual-
ities. However, some of these properties are more difficult to achieve
than others. For example, suppose that features j and k are perfectly
correlated, with β∗

j > 0 and β∗
k = 0. In this scenario, it is impossible to

achieve consistent estimation or variable selection: even with an infinite
amount of data, we cannot tell which of the two is the null feature (i.e.,
the model is unidentifiable). This does not prevent us from obtaining
accurate predictions, however. Thus, as we will see, theoretical results
concerning estimation and selection consistency require additional regu-
larity conditions to exclude such scenarios, while prediction consistency
can be achieved under weaker conditions.

As often in statistics, closed-form results for finite sample sizes are
typically difficult to obtain, so we focus on asymptotic results as n→∞.
Classically, we would treat β∗ as fixed and consider the behavior of β̂
as n grows. This offers a number of interesting insights, and is the setup
we will initially focus on, in Sections 5.2 - 5.3.

However, these results also have the potential to be misleading, in
that if n increases while β remains fixed, in the limit we are always
looking at a situation in which n≫ p. Is this really a relevant justification
for using the method with data where p ≫ n? For this reason, it is
also worth considering the high-dimensional asymptotic case where p is
allowed to increase with n. Typically, this involves assuming that the
size of the sparse set, |S|, stays fixed, and it is only the size of the null
set that increases, so that |S| ≪ n and |N | ≫ n.

The setup we have been describing is sometimes referred to as “hard
sparsity”, and it is the setup we will focus on in this chapter. Specifically,
hard sparsity means that β∗ has a fixed, finite number of nonzero entries.
However, many of the results we will describe also apply to other settings
in which most elements of β∗ are small, but not necessarily exactly zero.
Such settings are sometimes called “weakly sparse”. For example, we
might allow the elements of N to be nonzero, provided that they are
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under a certain size: |β∗
j | < m for all j ∈ N . Yet another theoretical setup

is to assume that β∗ is merely limited in size in the sense that
∑

j |β∗
j | ≤

R. For many purposes, if this is true, then β∗ can be approximated well
by a sparse vector and penalized regression methods can still achieve
good performance with respect to prediction and estimation.

5.2 Orthonormal case

We will begin our examination of the theoretical properties of penalized
regression methods by considering the special case of an orthonormal
design:

1
nX

TX = I

y = Xβ + ε

εi
⊥⊥∼ N(0, σ2).

(O1)

Here, the matrix X is changing with the sample size, but satisfies the
above condition for all values of n. For the sake of brevity, I’ll refer
to these assumptions in what follows as (O1). This might seem like an
overly simplistic case, but it is a good place to start. Indeed, many of
the important theoretical results concerning the relationship between
the various methods carry over to the general design case provided some
additional regularity conditions are met. We will start by showing the
basic results for the lasso, then extend them to MCP, SCAD, and the
elastic net.

5.2.1 Selection

Let us begin by considering the question: how large must λ be in order
to ensure that all the coefficients in N are eliminated? The answer is
given by the following theorem and its corollary.

Theorem 5.1. Under (O1),

P(∃j ∈ N : β̂j ̸= 0) ≤ 2 exp

{
−nλ

2

2σ2
+ log p

}
.

Proof. Under (O1), we have

1
nx

T
j y ∼ N(0, σ

2

n )
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and, by Exercise 5.1,

P{ 1n
∣∣xT

j y
∣∣ ≥ λ} ≤ 2 exp{−nλ2

2σ2 }.

for all j ∈ N . Therefore, the probability that β̂j ̸= 0 for at least one
j ∈ N is, by the union bound,

P
{ ⋃

j∈N

1
n

∣∣xT
j y
∣∣ ≥ λ} ≤∑

j∈N
2 exp{−nλ

2

2σ2
}

≤ 2p exp{−nλ
2

2σ2
}

= 2 exp{−nλ
2

2σ2
+ log p}.

Theorem 5.1 provides an upper bound on the probability of incor-
rectly selecting a single null feature. We can therefore guarantee that
we have eliminated all the null features by choosing a sufficiently large
sequence of λ values as n increases:

Corollary 5.1. Under (O1), if
√
nλ→∞, then

P(β̂j = 0∀j ∈ N )→ 1.

Note that if instead
√
nλ → c, where c is a constant, then P(β̂j =

0 ∀j ∈ N )→ 1− ϵ, where ϵ > 0. In other words, for all n there remains
the possibility that the lasso will select some variables from the null set
N .

Nevertheless, if λ = O(σ
√
n−1 log p), then there is at least a chance

of completely eliminating all variables in N . Setting λ to something of
this order comes up often in extending theoretical results to the case
where p is allowed to grow with n (Section 5.4). Indeed, this gives us
a glimpse of how it is possible to carry out statistical analyses in this
setting: unless p is growing exponentially fast with n, the ratio log(p)/n
can still go to zero even if p > n.

The above theorem considered eliminating all of the variables in N .
The natural question to consider next is: what is required in order for
the lasso to select all of the variables in S?

Theorem 5.2. Under (O1), if λ→ 0 as n→∞, then

P{sign(β̂j) = sign(β∗
j )∀j ∈ S} → 1.

Proof. Under (O1), we have

1
nx

T
j y ∼ N(β∗

j ,
σ2

n )



Theoretical results 121

for all j ∈ S. Let us assume without loss of generality that β∗
j > 0. In

this case, the probability that β∗
j and β̂j have the same sign is

P{ 1nx
T
j y ≥ λ} = 1− Φ

(
λ− β∗

j

σ/
√
n

)
,

which converges to 1 if λ→ 0. Since |S| is finite, the result stated in the
theorem follows.

Putting together Theorem 5.1 and 5.2, we obtain the asymptotic
conditions necessary for selection consistency as n→∞. Namely, for the
lasso to be selection consistent (select the correct model with probability
tending to 1), we require λ→ 0 and

√
nλ→∞. Note that it is possible

to choose a sequence of λ values such that both conditions are satisfied
simultaneously.

5.2.2 Estimation

Let us now consider estimation consistency. It is trivial to show that
under (O1), β̂ is a consistent estimator of β∗ if λ → 0: if λ → 0, β̂
converges to the OLS, which is consistent. A more interesting condition
is
√
n-consistency.

Theorem 5.3. Under (O1), β̂ is a
√
n-consistent estimator of β∗ if√

nλ→ c, with c <∞.

Proof. Let us begin by noting that the lasso estimate is always within λ
of the estimate. Thus,

√
n(β̂j − β∗

j ) =
√
n(β̂OLS

j − β∗
j ) +O(

√
nλ).

The first term is Op(1) by the
√
n-consistency of the OLS estimator,

while the second term is O(1) by the conditions given in the theorem.

As is clear from the above proof, the above result essentially holds if
and only if

√
nλ → c < ∞. Provided that β∗ has at least one nonzero

element,
√
n(β̂−β∗) will contain a bias term on the order of

√
nλ, which

will blow up if λ does not go to zero fast enough. Only in the special
case of β∗ = 0 is bias not an issue.

Thus, in summary, it is possible for the lasso to be
√
n-consistent.

Earlier, we saw that it was possible for the lasso to be selection con-
sistent. However, it is not possible for the lasso to achieve both goals
at the same time. Specifically, we require

√
nλ → ∞ to correctly se-

lect the model with probability 1, but we require
√
nλ → c < ∞ for√

n-consistency. As we will see in Section 5.2.4, this is one of the main
theoretical shortcomings of the lasso that methods such as MCP and
SCAD aim to correct.
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5.2.3 Prediction

In the orthonormal case, note that

1

n
∥Xβ̂ −Xβ∗∥22 = ∥β̂ − β∗∥22.

Thus, since
√
n(β̂ − β∗) = Op(1) by Theorem 5.3, we have the immedi-

ate corollary that if
√
nλ → c, the prediction error is Op(n

−1). In the
sections that follow (5.3 and 5.4), the connection between estimation
and prediction consistency will not be so direct – as mentioned in Sec-
tion 5.1, outside of the orthonormal case, we can encounter situations
in which a model may be prediction consistent yet fail to be estimation
consistent.

Nevertheless, the above result demonstrates the connection between
prediction and estimation, and suggests that if we use a prediction-based
criterion such as cross-validation to choose λ, we emphasize estimation
accuracy over selection accuracy. Given the conflict in the requirements
for λ between estimation/prediction and selection described at the end of
Section 5.2.2, these results imply that cross-validation will tend to choose
small values of λ that, while appropriate for estimation/prediction accu-
racy, have a high probability of allowing null coefficients into the model.

This result is most easily seen for the orthonormal case, but the
remark is by no means specific to this situation. In general, lasso esti-
mates based on cross-validation tend to recover the true variables with
high probability, but also include a number of superfluous variables. This
means that the lasso is not ideal if one desires a low false positive rate
among the features selected by a model. However, the lasso can be very
useful for purposes of a screening tool to recover the important variables
as the first step in an analysis such as the adaptive lasso.

5.2.4 Other penalties

In the previous section, we saw that the lasso cannot simultaneously
achieve both

√
n-consistency and selection consistency. MCP and SCAD,

however, can accomplish this. We begin by noting that since lasso,
MCP, and SCAD all have the same conditions for selecting a variable
( 1n
∣∣xT

j y
∣∣ > λ =⇒ β̂j ̸= 0), the results of Theorems 5.1 and 5.2 apply

to MCP and SCAD as well.
With respect to estimation, however, MCP and SCAD are able to

achieve
√
n-consistency under weaker conditions than the lasso. Unlike

Theorem 5.3 for the lasso, MCP and SCAD do not have a bias term that
goes to ∞ if

√
nλ→∞; for MCP and SCAD the bias term goes to zero

provided that λ→ 0.
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In fact, we can prove an even stronger result for MCP and SCAD:
given an appropriate choice of λ, these two estimators will equal the
oracle estimator with probability tending to 1. The oracle estimator was
mentioned in Chapter 1 and Chapter 3, but we give an explicit definition

here. Letting β̂
∗
denote the oracle estimator, β̂

∗
satisfies β̂

∗
N = 0 and

β̂
∗
S minimizes ∥y −XSβS∥22.

Theorem 5.4. Under (O1), suppose λ → 0 and
√
nλ → ∞. Then

β̂ = β̂
∗
with probability tending to 1, where β̂ is either the MCP or

SCAD estimate.

Proof. Corollary 5.1 establishes that β̂N = 0 if
√
nλ→∞. For j ∈ S, we

have β̂j = β̂OLS
j if |β̂OLS

j | > γλ. This happens with probability tending
to 1 if λ→ 0.

Thus, one can choose a sequence of λ values such that the MCP or
SCAD estimator is both

√
n-consistent and selects the correct model

with probability tending to 1. This result, combining estimation and
selection consistency, is how the oracle property is usually stated. It
means that the estimator is equivalent, at least in an asymptotic sense,
to what we would obtain if an all-knowing oracle were to inform us in
advance which coefficients were zero and which were nonzero, and we
proceeded to fit an ordinary least squares model using only the nonzero
features. As we will see in the coming sections, given suitable regularity
conditions the oracle result holds for MCP/SCAD estimates in non-
orthonormal settings as well.

Oracle results can be shown for the many of the methods introduced
in Chapter 3, a reward for their efforts at bias-reduction. For example,
the adaptive lasso possesses the oracle property: with a consistent initial
estimator, the bias term goes to zero. Although it would never be exactly

equal to the oracle estimator β̂
∗
, it still obtains the optimal

√
n rate of

convergence while eliminating all the features in N .

5.3 p < n case

The results of Section 5.2 can be extended to the case of a general design
matrix, although as mentioned in Section 5.3, we will need to require
certain conditions on the design matrix X in order to be able to estimate
β∗ accurately. Specifically, consider the following set of assumptions,
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which we will refer to as (G1):

1
nX

TX = Σn

y = Xβ + ε

εi
⊥⊥∼ N(0, σ2).

(G1)

In addition, we assume that Σn → Σ, with maximum eigenvalue ξ∗ and
minimum eigenvalue ξ∗.

5.3.1 Estimation

Theorem 5.5. Under (G1), the lasso estimator β̂ is a
√
n-consistent

estimator of β∗ if (i)
√
nλ→ c, with c <∞ and (ii) ξ∗ > 0.

Proof. To prove
√
n-consistency, we must show that for any ϵ and any

β∗, there exist n0 and R such that

P{β̂ ∈ BR/
√
n(β

∗)} > 1− ϵ

for all n > n0, where BR/
√
n(β

∗) is the p-dimensional ball centered at

β∗ with radius R/
√
n. In other words, β̂ is guaranteed to be within an

ever-shrinking ball centered at β∗. We will show that, for sufficiently
large n, the objective function at the surface of the ball is larger than
the objective function at the center, and therefore, the minimizer β̂ must
lie somewhere within the ball. Letting D(u) ≡ nQ(β∗ + u√

n
)− nQ(β∗)

denote the difference in (rescaled) objective function between the surface
and center of the ball, where u is a vector with ∥u∥ = R, we have

D(u) ≥ 1
2∥y −X(β∗ + u√

n
)∥22 − 1

2∥y −Xβ∗∥22

+ nλ
∑
j∈S

{∣∣∣β∗
j +

uj√
n

∣∣∣− ∣∣β∗
j

∣∣}
= 1√

n
uTXTε+ 1

2nu
TXTXu+ nλ

∑
j∈S

{∣∣∣β∗
j +

uj√
n

∣∣∣− ∣∣β∗
j

∣∣}
As n→∞, the above converges (in distribution) to

σ
√
uTΣuZ +

1

2
uTΣu+ c

∑
j∈S

sign(β∗
j )uj ,

where Z is a standard normal random variable. Now, the first and third
terms may be negative, but the middle term must be positive under the
requirement that Σ is positive definite. What remains is to show that
we can always choose an R such that the middle term dominates the
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other two. Letting the first and third terms be as large as possible and
the middle as small as possible, we arrive at

lim
n→∞

D(u) ⪰ Rσ
√
ξ∗Z + R2

2 ξ∗ − cR |S| ,

where ⪰ denotes stochastic ordering. Since the middle term is of or-
der R2 and the others of order R, we can always choose R such that
sup∥u∥=RD(u) > 0 with probability at least 1− ϵ.

In the above, note that if
√
nλ → ∞, the above result would no

longer hold.

5.3.2 Prediction

Given
√
n-consistency, it is straightforward to show that the prediction

error is Op(n
−1): demonstration here.

However, do we actually need ξ∗ > 0 for prediction consistency?
The answer, as it turns out, is no. Alternative proof without eigenvalue
assumption here.

5.3.3 Selection

Fan and Li Lemma 1
Remark on convergence in distribution
Remark on oracle property

5.4 p > n case

5.4.1 Eigenvalue conditions

Restricted eigenvalues
Sparse Riesz condition
Irrepresentable condition
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5.4.2 Prediction

5.4.3 Estimation

5.4.4 The p > n case

Let ψ(β) = ∥Xβ∥2/(2n) and z = XTy/n. Define

ℓ(β) = ψ(β)− z′β. (5.1)

We have

1

2n
∥y −Xβ∥2 = ℓ(β) +

1

2n
yTy.

Since the term yTy/(2n) does not involve β, the lasso can be equivalently
defined as

β̂ = argmin
β

{
ℓ(β) + λ∥β∥1.

}
The score function of ℓ is the gradient

ℓ̇(β) =
∂ℓ(β)

∂β
=
∂ψ(β)

∂β
− z = ψ̇(β)− z.

Define

D(β,β∗) = ℓ(β)− ℓ(β∗)− ℓ̇(β∗)T (β − β∗).

This is the Bregman divergence associated with ℓ. Its symmetrized ver-
sion is

∆(β,β∗) = D(β,β∗) +D(β∗,β) = (β − β∗)T (ψ̇(β)− ψ̇(β∗)). (5.2)

For the linear regression model (2.1), ψ̇(β)− ψ̇(β∗) = XTXβ−XTXβ∗,
thus

∆(β,β∗) = ∥Xβ −Xβ∗∥2/n.

which is simply the model error.
Define z∗0 = ∥{z − ψ̇(β∗)}S∥∞, z∗1 = ∥{z − ψ̇(β∗)}Sc∥∞, and z∗ =

∥z − ψ̇(β∗)∥∞. Obviously, z∗ ≥ max{z∗0 , z∗1}. For the linear regression
model (2.1),

z− ψ̇(β∗) = (XTy −XTXβ∗)/n = XT (y −Xβ∗)/n.

In particular, for β∗ = β0, z− ψ̇(β0) = XT (y −Xβ0)/n = XTε/n.
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Theorem 5.6. Let β∗ be a target vector. In the event {z∗ ≤ λ},

∆(β,β∗) ≤ 2λ∥β∗∥1. (5.3)

The upper bound in Theorem (5.6) gives the so called “slow rate”
of convergence for the Bregman divergence. This theorem makes no as-
sumption on the model. In particular, it does not assume any sparsity
condition on β0, so β0 can be a dense vector. To obtain a faster rate of
convergence, we will need to make use the sparsity condition.

Lemma 5.1. Let δ = β̂ − β∗. For any target vector β∗ and S ⊇ {j :
β∗
j ̸= 0},

∆(β∗ + δ,β∗) + (λ− z∗1)∥δSc∥1 ≤ (λ+ z∗0)∥δS∥1.

Consequently, for any ξ > 1, in the event {z∗0+ξz∗1 ≤ (ξ−1)λ}, δ belongs
to the set

R(ξ, S) = {b ∈ Rp : ∥bSc∥1 ≤ ξ∥bS∥1} (5.4)

By Lemma 5.1, it suffices to study the analytical properties of the
lasso in the restricted region (5.4) and show that the event {z∗0 + ξz∗1 ≤
(ξ − 1)λ} has large probability. The choices of the target vector β∗ and
the sparse set S = {j : β∗

j ̸= 0} are quite flexible. The main requirement
is that {S, z∗0 , z∗1} should be small. In the linear regression model, we
can consider β∗ as the vector of true regression coefficients, that is,
β∗ = β0. However, β∗ can also be a sparse version of a true β0, for
example, β∗

j = β0j1{|β0j | ≥ τ} for a small τ .

Recall the Gram matrix G = XTX/n. Define

RE2(ξ, S) = inf
b∈R(ξ,S)

∥Xb∥2√
n∥b∥2

= inf
b∈R(ξ,S)

(bTGb)1/2

∥b∥2
. (5.5)

Let ϕ(b) defined in Rp be a quasi-star shaped function, meaning
ϕ(b) is continuous and nondecreasing in t ∈ [0,∞) for all b ∈ Rp and
limb→0 ϕ(b) = 0. Important special cases of a quasi-star shaped func-
tions include the ℓq norms ∥b∥q, q > 0. Define

F0(ξ, S;ϕ) = inf
b∈R(ξ,S)

bTGb

∥bS∥1ϕ(b)
. (5.6)

For ϕ(b) = ∥bS∥1/|S|, F 1/2
0 (ξ, S;ϕ1,S) is the compatibility factor

κ(ξ, S) = inf
b∈R(ξ,S)

( bTGb

∥bS∥21/|S|

)1/2
.

Since ∥bS∥21 ≤ ∥b∥22|S|, κ(ξ, S) ≥ RE2(ξ, S).
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Theorem 5.7. In the event {z∗0+ξz∗1 ≤ (ξ−1)λ}, we have, with ϕq(b) =
∥b∥q/|S|1/q,

∥β̂ − β0∥q ≤
(λ+ z∗1)|S|1/q

F0(ξ, S;ϕq)
, for every q > 0, (5.7)

and with ϕ1,S(b) = ∥bS∥1/|S|,

∆(β̂,β0) + (λ− z∗1)∥δSc∥1 ≤
(λ+ z∗0)|S|
F0(ξ, S;ϕ1,S)

. (5.8)

Since z∗ ≥ max{z∗0 , z∗1}, the event {z∗0+ξz∗1 ≤ (ξ−1)λ} is included in
{z∗ ≤ (ξ− 1)λ/(ξ+1)}. It can be verified that with λ1 = σ

√
2 log(p)/n,

P(z∗ > λ1) ≤
2√
2πp

. (5.9)

Corollary 5.2. Suppose λ = σ
√

2 log(p)/n.
(i) With probability at least 1− (2/

√
2πp),

∥β̂ − β0∥q ≤
2|S|1/q

(1 + ξ)F0(ξ, S;ϕq)
σ

√
2 log p

n
, for every q > 0.

(ii) With the same probability as in (i), and with ϕ1,S(b) =
∥bS∥1/|S|,

∆(β̂,β0) + (λ− z∗1)∥δSc∥1 ≤
2|S|

(1 + ξ)F0(ξ, S;ϕ1,S)
σ

√
2 log p

n
. (5.10)

5.4.5 Selection

The above results give upper bounds for estimation and prediction errors.
The following theorem provides sufficient conditions under which the
lasso is selection consistent.

Theorem 5.8. Suppose there exist constants 0 < κ0 < 1 and 0 < κ1 <
∞ such that

|XT
ScXS(X

T
SXS)

−1sign(βS)|∞ ≤ κ0 (5.11)

and

∥XT
ScXS(X

T
SXS)

−1∥∞ ≤ κ1. (5.12)

Then sign(β̂) = sign(β∗) in the event that

∥(XT
SXS)

−1∥∞(λ+ z∗0) < min
j∈S
|β∗

j |.

Therefore, P(sign(β̂) = sign(β∗)) → 1 if P{∥(XT
SXS)

−1∥∞(λ + z∗0) <
minj∈S |β∗

j |} → 1.
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5.4.6 Proofs of the results in Section 5.4.4

The proofs will be based on Huang and Zhang (2012)[ Estimation and
selection via absolute penalized convex minimization and its multistage
adaptive applications. Journal of Machine Learning Research, 13, 1839-
1864], in which the theoretical properties of the general weighted lasso
for a class of convex losses are studied.

For any A ⊆ {1, . . . , J}, denote

XA = (Xj , j ∈ A), ΣA = X′
AXA/n.

Let the true value of the regression coefficients be βo = (βo
1 , . . . , β

o
p)

′.
Let S = {j : βo

j ̸= 0, 1 ≤ j ≤ p}, which is the set of indices of the nonzero
coefficients in the underlying model. Let βo

∗ = min{|βo
j | : j ∈ S} and set

βo
∗ =∞ if S is empty. Define

β̂
o
= argmin

βRp

{∥y −Xβ∥22 : βj = 0 ∀j ̸∈ S}. (5.13)

This is the oracle least squares estimator. Of course, it is not a real
estimator, since the oracle set is unknown.

Let cmin be the smallest eigenvalue of Σ, and let c1 and c2 be the
smallest and largest eigenvalues of ΣS , respectively.

We first consider the case where the MCP objective function is con-
vex. This necessarily requires cmin > 0.

Let

h(t, k) = exp
(
− k(
√
2t− 1− 1)2/4

)
, t > 1, k = 1, 2 . . . . (5.14)

This function arises from an upper bound for the tail probabilities of
chi-square distributions given in Lemma 1 in the Appendix.

η1n(λ) = (p− |S|)h
(
λ2n/σ2, 1

)
(5.15)

and
η2n(λ) = |S|h

(
c1n(β

o
∗ − γλ)2/σ2, 1

)
. (5.16)

Theorem 5.9. Suppose ε1, . . . , εn are independent and identically dis-
tributed as N(0, σ2). Then for any (λ, γ) satisfying γ > 1/cmin, β

o
∗ > γλ

and nλ2 > σ2, we have

P
(
β̂(λ, γ) ̸= β̂

o)
≤ η1n(λ) + η2n(λ).

This theorem provides an upper bound on the probability that
β̂(λ, γ) is not equal to the oracle least squares estimator. The condi-
tion γ > 1/cmin ensures that the 2-norm group MCP criterion is strictly
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convex. This implies β̂(λ, γ) is uniquely characterized by the Karush-
Kuhn-Tucker conditions. The condition nλ2 > σ2 requires that λ cannot
be too small.

Let

λn = σ
√
2 log(p)/(n) and

τn = σ
√
2 log(max{|S|, 1})/(nc1).

(5.17)

The following corollary is an immediate consequence of Theorem 5.9.

Corollary 5.3. Suppose that the conditions of Theorem 5.9 are satisfied.
Also suppose that βo

∗ ≥ γλ+ anτn for an →∞ as n→∞. If λ ≥ anλn,
then

P(β̂(λ, γ) ̸= β̂
o
)→ 0 as n→∞.

By Corollary 5.3, the MCP estimator behaves like the oracle least
squares estimator with high probability. This of course implies it is se-
lection consistent. For the standard LASSO estimator, a sufficient condi-
tion for its sign consistency is the strong irrepresentable condition (Zhao
and Yu 2006). Here a similar condition holds automatically due to the
form of the MCP. Specifically, let βo

S = (βo′

j : j ∈ S)′. Then an exten-
sion of the irrepresentable condition to the present setting is, for some
0 < δ < 1,

max
j ̸∈S
∥X′

jXS(X
′
SXS)

−1Ṗ (βo
S ;λ, γ)/λ∥2 ≤ 1− δ, (5.18)

where Ṗ (βo
S ;λ, γ) = (Ṗ (|βo

j |;λ, γ)sign(βo
j ) : j ∈ S)′ with

Ṗ (|βo
j |;λ, γ) = λ

(
1− |βo

j |/γλ)
)
+
.

Since it is assumed that minj∈S |βo
j | > γλ, we have Ṗ (|βo

j |;λ, γ) = 0 for
all j ∈ S. Therefore, (5.18) holds automatically.

We now consider the high-dimensional case where J > n. We require
the sparse Riesz condition, or SRC (Zhang and Huang 2008), which is
a form of sparse eigenvalue condition. We say that X satisfies the SRC
with rank d∗ and spectrum bounds {c∗, c∗} if

0 < c∗ ≤ ∥XAu∥22/n ≤ c∗ <∞, ∀A with |A| ≤ d∗, ∥u∥2 = 1. (5.19)

We refer to this condition as SRC(d∗, c∗, c
∗).

Let K∗ = (c∗/c∗)− (1/2), m∗ = K∗|S| and ξ = 1/(4c). Define

η3n(λ) = (p− |S|)m∗
em∗

mm∗
∗
h(ξnλ2σ−2/dmax,m∗). (5.20)

Let η1n and η2n be as in (5.15) and (5.16).
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Theorem 5.10. Suppose ε1, . . . , εn are independent and identically dis-
tributed as N(0, σ2) and X satisfies the SRC(d∗, c∗, c

∗) in (5.19) with
d∗ ≥ (K∗+1)|S|. Then for any (λ, γ) satisfying βo

∗ > γλ, nλ2ξ > σ2dmax

and γ ≥ c−1
∗
√
4 + (c∗/c∗), we have

P
(
β̂(λ, γ) ̸= β̂

o)
≤ η1n(λ) + η2n(λ) + η3n(λ).

Let
λ∗n = 2σ

√
2c∗ log(p− |S|)/n

and τn be as in (5.17). Theorem 5.10 has the following corollary.

Corollary 5.4. Suppose the conditions of Theorem 5.10 are satisfied.
Also suppose βo

∗ ≥ γλ+anτn for an →∞ as n→∞. Then if λ ≥ anλ∗n,

P
(
β̂(λ, γ) ̸= β̂

o)
→ 0 as n→∞.

Theorem 5.10 and Corollary 5.4 provide sufficient conditions for the
selection consistency of the global MCP estimator in the p ≫ n sit-
uations. For example, we can have p = exp{o(n/c∗)}. The condition
nλ2ξ > σ2 is stronger than the corresponding condition nλ2 > σ2 in
Theorem 5.9. The condition γ ≥ c−1

∗
√

4 + (c∗/c∗) ensures that the MCP
criterion is convex in any d∗-dimensional subspace. It is stronger than
the minimal sufficient condition γ > 1/c∗ for convexity in d∗-dimensional
subspaces. These reflect the difficulty and extra efforts needed in reduc-
ing a p-dimensional problem to a d∗-dimensional problem. The SRC in
(5.19) guarantees that the model is identifiable in a lower d∗-dimensional
space.

The results presented above are concerned with the global solutions.
The properties of the local solutions, such as those produced by the coor-
dinate descent algorithm, to concave penalties remain largely unknown
in models with p≫ n. An interesting question is under what conditions
the local solutions are equal to or sufficiently close to the global solutions
so that they are still selection consistent.

5.4.7 Proof of oracle property

The proof will be based on Zhang (2010). (Zhang (2010). Nearly unbiased
variable selection under minimax concave penalty. Ann. Statist. 38 894-
942.)
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5.4.8 Technical details

5.5 Oracle ridge estimators

A section will be added on the theoretical properties of the Mnet ap-
proach based on Huang et al. (2015). (Huang, Breheny, Lee, Ma and
Zhang (2015). The Mnet method for variable selection. Accepted for
publication by Statistica Sinica.)

5.6 Sandbox

THIS IS JUST A TEMPORARY HOLDING PLACE FOR MATERIAL
THAT MAY OR MAY NOT APPEAR.

Theorem 5.11. Suppose that as n → ∞, we have XTX/n → G0 and
max1≤i≤n x

T
i xi/n→ 0. If

√
nλ→ λ0, then we have

√
n(β̂n − β∗)→D argmin

t
V (t), (5.21)

where

V (t) = −σt′Σ1/2z+
1

2
t′Σt

+ λ0

p∑
j=1

{tjsign(β0j)1(β0j ̸= 0) + |tj |1(β0j = 0)}.

Unlike in regular situations where we have an asymptotically normal
distribution for our estimators such as an MLE, the lasso has a com-
plicated asymptotic distribution that depends on the unknown and is
difficult to evalute.

When λ0 = 0, i.e.,
√
nλ→ 0,

V (t) = −σt′G1/2
0 Z +

1

2
t′G0t,

which is minimized at σG
1/2
0 Z ∼ N(0, σ2G0). This is the limit distri-

bution of the OLS estimator. However, this is an uninteresting case, for
the Lasso essentially behaves like the OLS estimator, which does not do
variable selection. The right order of growth for λ is when

√
nλ → λ0

for λ0 > 0.
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Consider the case where p = 2. Suppose β1 > 0 and β2 = 0, and
suppose the off-diagonal element of G0 is ρ. Its diagonal elements are 1
since the predictors are standardized. Then

V (t) = −t′G1/2
0 z+

1

2
t′G0t+ λ0t1 + λ0|t2|.

If V (t) is minimized at t2 = 0, then

t1 − z1 = λ0 and λ0 ≤ ρt1 − z2 ≤ λ0.

Solving for t1 in the first equation, we get t1 = z1 − λ0. Thus t2 = 0 if

−λ0 ≤ ρ(z1 − λ0)− z2 ≤ λ0.

So the probability of t2 = 0 is P(|ρ(z1 − λ0) − z2| ≤ λ0). After some
calculation, this equals

Φ
(
λ0

√
1 + ρ

1− ρ

)
− Φ

(
− λ0

√
1− ρ
1 + ρ

)
.

If we wish this probability big, we need a big λ0, but a big λ0 will
cause big bias in t1.

Proof of (5.21). Let β = β∗ + n−1/2t. Define

L(t) =
1

2n
∥y −Xβ∥2 + λ∥β∥1

=
1

2n
∥y −X(β0 + n−1/2t)∥2 + λ∥β0 + n−1/2t∥.

Let θ̂n = argmint Vn(t), where

Vn(t) = n(Ln(t)− Ln(0))

=
1

2
(∥ε− n−1/2Xt∥2 − ∥ε∥2) + nλ(∥β0 + n−1/2t∥1 − ∥β0∥1).

Then
√
n(β̂ − β0) = θ̂n. The idea is to show that Vn(t) →d V (t). By

the argmin continuous mapping theorem (Kim and Pollard (1990)), if
we can show

√
n(β̂ − β0) = Op(1), (5.22)

and

Vn(t)→D V (t), (5.23)
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then √
n(β̂ − β0) = θ̂n →d argmin

t
V (t).

The assertion (5.22) can be easily proved. So we only need to show (5.23).
The first term in the expression of Vn

1

2
(∥ε− n−1/2Xt∥2 − ∥ε∥2)→D −σt′Σ1/2Z +

1

2
t′Σt,

where Z ∼ N(0, Ip), The second term in the expression of Vn

nλ(∥β0 + n−1/2t∥1 − ∥β0∥1)→

λ0

p∑
j=1

{tjsign(β0j)1(β0j ̸= 0) + |tj |1(β0j = 0)}.

These imply Vn(t)→D V (t), where

V (t) = −σt′Σ1/2z+
1

2
t′Σt

+ λ0

p∑
j=1

{tjsign(β0j)1(β0j ̸= 0) + |tj |1(β0j = 0)}.

Therefore,
√
n(β̂n − β0)→D argmint V (t).

5.7 Bibliographical notes

This section will include the bibliographical notes on the materials pre-
sented in this chapter.

5.8 Exercises

5.1. Gaussian tail bound. The Chernoff bound for a random variable X
says that for any t > 0, if E(etX) exists, then

P(X ≥ λ) ≤ E(etX)

etλ
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Use the Chernoff bound to show that for Z ∼ N(0, σ2/n),

P(|Z| ≥ λ) ≤ 2 exp

{
−nλ

2

2σ2

}
for any λ > 0.

5.2. Verify the maximal inequality (5.9).

5.3. Prediction bound under RE condition. Suppose that the feature ma-
trix X satisfies the restricted eigenvalue condition RE(τ).

(a) Show that if λ ≥ 2
n∥X

Tε∥∞,

1

n
∥Xβ̂ −Xβ∗∥22 ≤

9

τ
λ2 |S| .

(b) Show that if y = Xβ∗ + ε with εi
⊥⊥∼ N(0, σ2) and λ =

2σ
√
c log(p)/n, then

1

n
∥Xβ̂ −Xβ∗∥22 ≤ 36c

σ2

τ

|S| log p
n

with probability 1− 2 exp{− 1
2 (c− 2) log p}.
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False discovery rates

Up to this point in the book, the only inferential questions we have
addressed have concerned the predictive ability of the model. Cross-
validation is an extremely useful tool for inference about prediction, but
we need to develop new approaches to address inference with respect to
the parameters themselves. This is the subject of Part II of this book.

This chapter addresses the question: How reliable are the selections
made by the model? Specifically, given that we have selected a number
of features, we would like to know what fraction of those features are
likely to be mere noise, only spuriously associated with the outcome.
This is closely related to the idea of the false discovery rate. The first
few sections of this chapter introduce the idea of the false discovery rate
from the perspective of univariate testing, and the remaining sections
apply this idea to penalized regression.

6.1 Introduction

Suppose we carry out a large number, h, of hypothesis tests (in Sec-
tions 6.1-6.3 we will use h to denote the number of features as opposed
to the usual p used elsewhere in the book to avoid confusion with p-
values). Suppose we arrange the outcomes of all these tests into a 2× 2
table on the basis of our decision to reject the null hypothesis or not
and whether the null hypothesis, in reality, is true or not. Note that the
rejection decision is known, but random, while the true status of the null
hypothesis is fixed, but unknown. This is represented in Table 6.1.

Classical frequentist statistics is entirely preoccupied with the “hor-
izontal” proportions in Table 6.1: namely, the Type I error A/h0 and
the power B/h1. In large-scale hypothesis testing, however, we can also
focus on the “vertical” proportions A/R, which is known as the false
discovery proportion. To prove anything about these proportions, we
need to consider their expected values, or rates; thus, we define the false
discovery rate (FDR) as E(A/R), and so on for the Type I error rate,

139
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TABLE 6.1
Possible outcomes of hypothesis testing.

Decision (random)
Null “Discovery” Total

Reality Null true h0 −A A h0
(fixed) Null false h1 −B B h1

Total h−R R h

etc. Note that this is a more complicated entity, being the ratio of two
random quantities. In particular, some care is needed in the definition
as it is possible for R to be zero; in that case the proportion is typically
defined to be zero, although there are other possible ways of handing
this situation.

The false discovery rate has a more direct interpretation than the
Type I error rate, in that it explicitly tells us what fraction of claimed
discoveries we can expect to be mere coincidences. This interpretation is
unavailable from a frequentist perspective in the low-dimensional case.
To calculate it requires specifying the prior probability of the hypothesis
being false; in high dimensions, however, we can use the data to derive
empirical estimates for the probability that a hypothesis will be false.
This is closely related to the idea of an empirical Bayes analysis, as we
will see in Section 6.3.

Example 6.1. To illustrate these ideas, we will use data from one of
the earliest and most well-known high-dimensional studies: a gene ex-
pression study of leukemia patients Golub et al. (1999). In the study,
the expression levels of 7, 129 genes were measured for for 72 patients.
Of the 72 patients, 47 had acute lymphoblastic leukemia (ALL), while
the other 25 had acute myeloid leukemia (AML). Of the two diseases,
AML has a considerably worse prognosis: only 26% survive at least 5
years following diagnosis, compared to 68% for ALL.

One way to approach the analysis is to carry out 7,129 two-sample
t-tests, obtaining the set of p-values {pj}7,129j=1 . A critical property of
p-values is that for any value u,

P0{P ≤ u} ≤ u,

where P is the p-value and P0 denotes the probability under the null
hypothesis; note that P is the random variable here in the sense that it
depends on the data. Thus, for any continuous null distribution,

P ∼ Unif(0, 1)

under the null hypothesis.
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Sometimes, it is more useful to work with z-values than p-values:

zj = Φ−1(pj),

or, for two-sided tests,

zj = −sjΦ−1(pj/2),

where sj is the sign of the jth test and Φ−1 is the inverse of the stan-
dard normal CDF. Under H0, Z ∼ N(0, 1). One advantage of z-values for
two-tailed tests is that they retain the sign information; in the present
context, the z-value tells us whether expression was higher in ALL or
AML patients, while the p-value does not. A histogram of the z-values,
along with the standard normal density as a reference, is given in Fig-
ure 6.1.
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FIGURE 6.1
z-values for the Leukemia data. The blue curve is the density of the
assumed null distribution, N(0, 1).

As the figure shows, there are many more features with very large
and small z-values than we would expect if the null distribution was true
for every feature (and many fewer z-values near zero).

6.2 The Benjamini-Hochberg procedure

Having carried out these hypothesis tests, it would be desirable if we
could apply a decision rule as in Table 6.1 that could offer some sort
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of guarantee with respect to the resulting false discovery rate. In 1995,
Yoav Benjamini and Yosef Hochberg published a paper describing a pro-
cedure capable of doing just this (Benjamini and Hochberg, 1995). The
procedure was not necessarily new, nor was the term “false discovery
rate”, but they were the first to provide a rigorous proof that the proce-
dure controlled the FDR, in the sense that E(A/R) was bounded above.
The paper has gone on to become extraordinarily influential, with over
30,000 citations – one of the most highly cited papers in the history of
statistics.

The Benjamini-Hochberg (BH) procedure is as follows:

(1) For a fixed value q, let imax denote the largest index for
which

p(i) ≤
i

h
q (6.1)

(2) Then reject all hypotheses H0(i) for i = 1, 2, . . . , imax

The theorem proved by Benjamini and Hochberg is given below with-
out proof. Benjamini and Hochberg’s original proof is somewhat lengthy;
a clever alternative proof based on martingale theory is given in Storey
et al. (2004). The original theorem was proved only for the case of in-
dependent tests. Later efforts have extended the results to tests that
are weakly dependent; as we will see in this chapter and the next two,
correlation among tests/features is an important consideration in high-
dimensional inference.

Theorem 6.1. For independent test statistics and for any configuration
of true and false null hypotheses, the BH procedure controls the FDR at
q.

The procedure as we have described it merely sorts tests into dis-
coveries and non-discoveries without providing any relative indication
of significance among the tests within a category. A useful FDR-based
measure of the significance of a test is given by a quantity known as the
q value, defined as

qj = inf{q : H0j rejected at FDR ≤ q}.

Another appealing feature of the q value is that it allows us to easily find
all the tests that can be rejected at an FDR control of 10% (namely, the
tests with qj < .1) or 5% or 20% without having to recalculate anything.
In R, q values can be obtained from p values via
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q <- p.adjust(p, method='BH')

although keep in mind that the interpretation of a false discovery rate
is rather different from the interpretation of a p-value.

For the Leukemia data, the Benjamini-Hochberg procedure allows us
to reject 1,635 hypotheses at an FDR of q = 0.1. This suggests that
approximately 163 of these discoveries may in fact simply be due to
chance. By comparison, 734 hypotheses may be rejected at an FDR of
q = 0.01; here, we would expect only about 7 findings to result from
chance alone.

FDR has become a widely accepted methodology, there is no con-
ventional standard for FDR cutoffs the way there is for p-values. Part of
the reason for this may be that FDR, being more directly interpretable,
is in less need of a standard: an investigator can intuitively weigh the
costs of failing to reproduce the findings in 20% of discoveries vs. 5%.

If you look into the details of the proof of Theorem 6.1, you will see
that the procedure is conservative. Its actual FDR is

E(A/R) =
h0
h
q.

Letting π0 = h0/h denote the fraction of hypotheses that are truly null,
one potential improvement to the BH procedure is to estimate π0. Given
such an estimate, we can simply replace h with ĥ0 = hπ̂0 everywhere it
appears in the BH procedure. Several authors have proposed approaches
for estimating π0 (Storey and Tibshirani, 2003; Efron, 2010). The idea
is certainly relevant to inference for high-dimensional regression as well,
although the details of the various estimation procedures fall outside the
scope of this book.

6.3 Empirical Bayes interpretation

The outlook of Section 6.2 was purely frequentist: a procedure was pro-
posed, and our justification was using it was to prove something about
its long-run properties with respect to some error rate. The same result,
however, can be motivated from several other perspectives, including an
empirical Bayes perspective which sheds some additional light on the
problem.

Suppose that the observed z-values come from a mixture of two
groups: the null group with probability π0 and density f0(z), and the
non-null group with probability π1 and density f1(z). Consider a region
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of interest Z and let F0(Z) denote the probability, for a feature in the
null group, of z ∈ Z, with

F (Z) = π0F0(Z) + π1F1(Z)

denoting the marginal probability of z ∈ Z. Suppose we observe z ∈ Z
and wish to know the group it belongs to. By applying Bayes’ rule, we
have

P(Null|z ∈ Z) = π0F0(Z)
F (Z)

. (6.2)

This expression involves three quantities: F0(Z), π0, and F (Z). As-
suming we believe in the theoretical null, F (Z) = Φ(Z). We could either
estimate π0, as mentioned in Section 6.2, or we could simply use 1 as an
upper bound. Finally, since we observe a large number, h, of z-values,
we can use their empirical distribution to estimate F (Z):

F̂ (Z) = #{zj ∈ Z}
h

.

Substituting these expressions into (6.2), we arrive at essentially the
same result as Benjamini and Hochberg. To see this, suppose that Z is
of the form Z = (−∞, z(i)], where z(i) is the ith ranked z-value. Then

P(Null|z(i) ∈ Z) =
p(i)

i/h
.

In other words, comparing P(Null|z(i) ∈ Z) to an FDR cutoff q, we have
the exact same inequality as in (6.1).

Note that the FDR has a nice interpretation here: whereas in fre-
quentist statistics, a common misconception is that p = 0.02 means that
P(H0|Data) = 2%, here the FDR actually does mean that (at least, in
the aggregate sense). From the empirical Bayes perspective, the FDR
methodology is not a testing procedure with error rates to be controlled,
but an estimation problem.

It is often more helpful to view FDR from an estimation perspective.
For example, correlated tests pose a considerable challenge with respect
to FDR contro. As an estimate, however,

F̂DR = π̂0F0(Z)/F̂ (Z) (6.3)

remains accurate even in the presence of correlated tests. Its accuracy
depends primarily on the accuracy of F̂ . Correlation among the z-values
introduces little or no bias to the empirical distribution function as an
estimate of F (Z). However, it can have a substantial impact on the
variance. Thus, correlation among tests does not necessarily render an
FDR estimate invalid, but it certainly diminishes our confidence in terms
of how close it is to the true false discovery proportion A/R.
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6.4 False discoveries in penalized regression under
orthogonality

We now turn our attention to the problem of false discoveries in pe-
nalized regression. Our derivations will focus on the lasso, but apply to
the MCP, SCAD, elastic net, and other penalties with straightforward
modifications.

Recall the KKT conditions for the lasso:

1

n
xT
j r = λ sign(β̂j) for all β̂j ̸= 0

1

n

∣∣xT
j r
∣∣ ≤ λ for all β̂j = 0

Let X−j and β−j denote the portions of the design matrix and co-
efficient vector that remain after removing the jth feature, and rj =

y −X−jβ̂−j denote the partial residuals with respect to feature j. The
KKT conditions thus imply that

1

n

∣∣xT
j rj
∣∣ > λ for all β̂j ̸= 0

1

n

∣∣xT
j rj
∣∣ ≤ λ for all β̂j = 0

(6.4)

and therefore that the probability that variable j is selected is

P
(
1

n

∣∣xT
j rj
∣∣ > λ

)
This indicates that if we are able to characterize the distribution of

1
nx

T
j rj under the null, we can estimate the number of false discoveries

in the model. Indeed, this is straightforward in the case of orthonormal
design ( 1nX

TX = I):

1

n
xT
j rj ∼ N(βj , σ

2/n). (6.5)

Thus, if βj = 0, we have

P
(
1

n

∣∣xT
j rj
∣∣ > λ

)
= 2Φ(−λ

√
n/σ).

These results are related to the expected number of false discoveries
in the following theorem.
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Theorem 6.2. Suppose 1
nX

TX = I. Then for any value of λ,

E |S ∩ N | = 2 |N |Φ(−λ
√
n/σ),

where S = {j : β̂j ̸= 0} is the set of selected variables and N = {j : βj =
0} is the set of null variables.

To use this as an estimate, the unknown quantities |N | and σ2 must
be estimated. First, |N |, can be replaced by p, using the total number
of variables as an upper bound for the null variables. The variance σ2

can be estimated by

σ̂2 =
rT r

n− |S|
;

this – dividing the residual sum of squares by the degrees of freedom of
the lasso – is the simplest approach to estimating the residual variance,
but other possibilities exist, as in Section 2.6.1. This implies the following
estimate for the expected number of false discoveries:

F̂D = 2pΦ(−
√
nλ/σ̂) (6.6)

and, as an estimate of the false discovery rate:

F̂DR =
F̂D

S
. (6.7)

6.5 False discoveries from a modeling perspective

The case of correlated variables, however, is considerably more complex.
Consider the causal diagram presented in Figure 6.2. In this situation,
variable A could never be considered a false discovery: it has a direct
causal relationship with the outcome Y . Likewise, if variable C were
selected, this would obviously count as a false discovery – C has no
relationship, direct or indirect, to the outcome.

Variable B, however, occupies a gray area as far as false discoveries
are concerned. From a marginal perspective, B is not a false discov-
ery, since it is not independent of Y . However, from a fully conditional
perspective, B is a false discovery because B and Y are conditionally in-
dependent given A. Finally, from a modeling perspective, we could also
adopt the point of view that B is a false discovery only if A is already
in the model.

To be more specific, here are the definitions of a false discovery under
these three perspectives:
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A

Y

B

N

FIGURE 6.2
Causal diagram depicting three types of features and their relationship
to the outcome.

� Marginal – A selected feature j is a false discovery if it is
marginally independent of the outcome: Xj ⊥⊥ Y .

� Fully conditional – A selected feature j is a false discovery if it
is independent of the outcome given all other features: Xj ⊥⊥
Y |{Xk}k ̸=j .

� Partially conditional – A selected feature j is a false discovery if
it is independent of the outcome given the other features in the
model: Xj ⊥⊥ Y |{Xk : k ∈ Mj−}, whereMj− denotes the set of
features with nonzero coefficients in the model, excluding feature
j.

As we will see in the next few chapters, estimating the number of false
selections from fully conditional and partially conditional perspectives
tends to require fairly complex methods. In this chapter, we consider
only the weaker, marginal definition of false discovery, and will see how
simple approaches like the one derived in Section 6.4 may still be used
to estimate the number of false selections arising from variables like N .

In this chapter, we define a noise feature to be a variable like N , that
has no causal path (direct or indirect) between it and the outcome, and
the marginal false discovery rate as the proportion of selected features
that are noise variables. Again, this definition is consistent with how false
discoveries are defined in univariate testing, but differs from conditional
approaches that we will discuss in later chapters.

The marginal perspective has several advantages. First, when two
variables (like A and B) are correlated, it is very difficult to distinguish
between which of them is driving changes in Y and which is merely cor-
related with Y. This can lead approaches that define false discoveries
according to βj = 0 to be very conservative, especially in high dimen-
sions.

Second, in many scientific applications, discovering variables like B
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is not problematic. For example, two genetic variants in close proximity
to each other on a chromosome will be highly correlated. Although it
is obviously desirable to identify which of the two is the causal variant,
locating a nearby variant is also an important scientific achievement, as
it narrows the search to a small region of the genome for future follow-up
studies.

The final advantage is clarity. From the marginal perspective,
whether or not a variable is a false discovery depends only on the rela-
tionships between it and the outcome, not whether any other variables
have been included in the model or not. For example, applying the par-
tially conditional perspective to penalized regression means that feature
j may be a false discovery for some values of λ, but not for others.

6.6 Marginal false discovery rates

The orthogonality of Section 6.4 clearly does not hold in general. Thank-
fully, the assumptions in that section can be relaxed in two important
ways that make the results more widely applicable. First, the predictors
do not have to be strictly orthogonal in order for the estimator to work;
they can simply be uncorrelated. Second, this condition of being uncor-
related applies only to the noise features – i.e., the variables like N in
Figure 6.2; variables like A and B can have any correlation structure.

To make these statements concrete, let A,N partition {1, 2, . . . , p}
such that βj = 0 for all j ∈ N and the following condition holds:

lim
n→∞

1

n
X′X =

[
ΣA 0
0 ΣN

]
.

Under this definition, the opening remarks of this section can be stated
precisely in the following theorem.

Theorem 6.3. Suppose 1
nX

T
NXN → ΣN = I. Then for any j ∈ N and

for any λ,

1√
n
x′
jrj

d−→ N(0, σ2).

Theorem 6.3 shows that if the noise features are uncorrelated, 1
nx

′
jrj

behaves precisely as it did (6.5) in Section 6.4. Thus, estimators (6.6)
and (6.7) are just as valid here as they are in the orthonormal case.

Example 6.2. To illustrate the consequences of Theorem 6.3, let us
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carry out the following simulation study, with both a “low-dimensional”
(n > p) and “high-dimensional” (n < p) component. Motivated by Fig-
ure 6.2, three types of features will be included:

� Causative: Six variables with βj = 1

� Correlated: Each causative feature is correlated (ρ = 0.5) with m
other features; m = 2 for the low-dimensional case and 9 for the
high-dimensional case

� Noise: Independent noise features are added to bring the total
number of variables up to 60 in the low-dimensional case and 600
in the high-dimensional case

The causative, correlated, and noise features correspond to variables A,
B, and N, respectively, in Figure 6.2. In each setting, the sample size was
n = 100, while the total number of causative/correlated/noise features
was 6/12/42 for the low-dimensional setting and 6/54/540 for the high-
dimensional setting.

The results of the simulation are shown in Figure 6.3.
As Theorem 6.3 implies, estimators (6.6) and (6.7) are quite accurate,

on average, when the noise features are independent. The estimated
number of marginal false discoveries and the marginal false discovery
rate (mFDR) are both somewhat conservative, as we would expect from
using p as an upper bound for the number of noise features (e.g., in
the high-dimensional case, p = 600 but |N | = 540). However, the effect
is slight in this setting. For example, in the high-dimensional case at
λ = 0.55, the actual mFDR was 5%, while the estimated rate was 6.5%.

Being able to estimate marginal false discovery rates means we can
use them to select the regularization parameter λ. For example, we could

choose λ to be the smallest value of λ such that m̂FDR(λ) < 0.1. Fig-
ure 6.4 compares this approach, “Lasso (mFDR)”, with the method we
have primarily relied upon thus far, cross-validation, as well as with uni-
variate testing (i.e., marginal regression). For each method, the number
of each type of feature the method selects on average is shown as a
stacked bar chart. For Lasso (mFDR) and univariate testing, the nomi-
nal false discovery rates were set to 10%.

It is worth noting that both Lasso (mFDR and univariate testing
limit the fraction of selections due to noise features (5% and 7%, respec-
tively, in the p = 60 simulation) to the nominal rate, but claim nothing
about the fraction arising from correlated features. This is obvious from
the figure for univariate testing; for Lasso (mFDR), the fraction of se-
lected features coming from either the Correlated or Noise groups (i.e.,
all features with βj = 0) was 17% in the low-dimensional setting and
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FIGURE 6.3
Accuracy of estimators (6.6) and (6.7) in the case of independent noise
features.

23% in the high-dimensional setting. Nevertheless, compared to univari-
ate testing, the Lasso (mFDR) approach has two distinct advantages.
Figure 6.4 shows that using a penalized regression approach both dimin-
ishes the number of merely correlated features selected and improves
power to detect the truly causative features.

Figure 6.4 also illustrates the lack of protection provided by cross-
validation against the selection of noise features. In each setting, over
half of the variables selected by the lasso with cross-validation were in
fact mere noise. NOTE: CONNECT TO THEORY CHAPTER. The
mFDR estimator provides an attractive way to assess this phenomenon
for a specific data set; we will see its utility for real data in Section 6.7.
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FIGURE 6.4
Average number of each type of feature selected by various methods for
the simulation setup in Example 6.2.

The preceding results are something of a best case scenario for esti-
mator (6.7), since the variables in N were independent and we know by
Theorem 6.3 that the estimator is valid in this case. When noise features
are correlated, the estimator becomes somewhat conservative. In most
situations, however, the effect is relatively small.

Example 6.3. To illustrate, let us carry out the following simulation.
The generating model contains 6 independent causative features and
494 correlated noise features, with a 1:1 signal-to-noise ratio (n = 100,
p = 500, R2 = 0.5). The noise features are given an autoregressive
correlation structure with Cor(xj ,xk) = 0.8|j−k|.

The results of the simulation are shown in Figure 6.5. Compared
to Figure 6.3, the mFDR estimates are somewhat more conservative in
this case, although still accurate enough to be useful in practice. For
example, at λ = 0.43, the true mFDR was 14%, while the estimated
rate according to (6.6) was 20%.

This illustrates that although its derivation was based on indepen-
dent noise features, the mFDR estimator is reasonably robust to the
presence of correlation. Furthermore, to the extent that it is inaccurate,
it provides a conservative estimate of the mFDR, and thus offers some
measure of control over the false discovery rate. To understand why the
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FIGURE 6.5
Accuracy of estimators (6.6) and (6.7) in the case of (autoregressive)
correlated noise features.

estimator is conservative in the presence of correlation, note that the
lasso (and most other penalized regression methods) will tend to select
a single feature rather than both when the two are correlated. Thus, the
uncorrelated case is not just mathematically convenient, it also repre-
sents a worst case scenario with respect to the number of noise features
that we can expect to be falsely selected.

6.7 Case study: Breast cancer gene expression study

To see how this works with real data, let’s take a look at the breast
cancer TCGA data; recall that n = 536 and p = 17, 322 in this example.
We can fit a lasso model with

fit <- ncvreg(X, y, penalty="lasso")

and then calculate marginal false discovery rates for the fitted model
object using the fir function (this function is available only in ncvreg,
not glmnet):

obj <- mfdr(fit)

The resulting mfdr object is similar to a data frame, with elements
S, the number of selected variables, EF, the expected number of noise
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features, and mFDR, the estimated marginal false discovery rate. So, for
example, to display the results for largest values of λ such that mFDR <
10%, we can submit:

> tail(obj[obj$mFDR < .1,])

EF S mFDR

0.0730 1.036495 48 0.02159364

0.0708 1.453916 50 0.02907831

0.0687 2.020152 52 0.03884907

0.0666 2.787655 52 0.05360874

0.0647 3.795806 54 0.07029270

0.0627 5.054797 55 0.09190540

The rows here are labeled with their corresponding λ value. From the
output, we can see that for λ = 0.0627, we can select 55 features whereas
only 5.05 would have been expected if all features were independent
noise, an mFDR of 9%.

The resulting object can also be plotted with

plot(obj) # Left side

plot(obj, type="EF") # Right side

which produces the output shown in Figure 6.6 (although the figure uses
the log.l=TRUE option to plot on the log scale). Both the plots and the
tabular output from R show that many genes are predictive of BRCA1
expression – we can safely select 55 variables before the mFDR exceeds
10%, or 52 before the mFDR exceeds 5%. This make sense scientifi-
cally, as a large number of genes are known to affect BRCA1 expression
through a variety of mechanisms, and the sample size here is sufficient
that we should be able to identify many of them.

It is worth comparing these results to the selection of λ by cross-
validation (CV). For the TCGA data, λ = 0.042 minimizes the CV er-
ror. The estimated mFDR at this value, however, is 77%, indicating that
although this value of λ may be attractive from a prediction perspec-
tive, we cannot be confident that the variables selected by the model are
truly related to the outcome. This is exactly what we would expect from
THEORYCHAPTER: while the lasso has attractive variable selection
and prediction properties, it cannot achieve both those aims simulta-
neously. In particular, if we select λ to minimize prediction error, we
can expect to select a number of noise features. The mFDR estimates
illustrate this concretely: λ = 0.0436 produces accurate predictions, but
a larger value, λ = 0.0627, is required in order to have confidence that
noise features have been eliminated from the set of selected variables.

Because the mFDR estimator follows directly from the KKT con-
ditions, it is straightforward to extend to other penalties. In fact, the
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FIGURE 6.6
Marginal false discovery rate estimates for a lasso model applied to the
breast cancer TCGA data.

KKT conditions for many penalties, such as MCP, SCAD, elastic net,
and MCP/SCAD + ridge, lead to the same expression (6.4) and therefore
the same mFDR estimator.

For the sake of comparison, let’s also an MCP model to the TCGA
data. As we have seen, for the value of λ minimizing CV error, the two
methods have similar predictive accuracy, with lasso slightly higher (0.61
vs. 0.58) while the MCP model uses far fewer features (38 vs. 96). As we
would expect from THEORYCHAPTER, the mFDR of the MCP model
is much lower than that of the lasso for these values of λ: 5% compared
to 77%. Obviously, we can restrict the lasso to an mFDR to 5% to make
its selections comparable in reliability to those of the lasso, but in doing
so, its predictive accuracy falls to R2 = 0.57.

We have seen this pattern in previous chapters for simulated data sets
and theoretical results, but mFDR estimates offer a way to observe and
assess this tradeoff between prediction accuracy and variable selection
accuracy in the analysis of real data. In the chapters to come, we will
explore a variety of inferential approaches for penalized regression models
that provide more comprehensive results, such as confidence intervals
for all model parameters, but the mFDR is a simple, useful summary
measure of feature selection reliability that is often useful to look at
when assessing the fit of a model.
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6.8 Bibliographical notes

This section will include the bibliographical notes on the materials pre-
sented in this chapter.

6.9 Exercises

6.1. Conditional distribution for random knockoffs. Suppose that the
joint distribution [X⊤ X̃⊤]⊤ ∼ N(0,G) where

G =

[
Σ Σ− S

Σ− S Σ

]
;

here S is a diagonal matrix with entries {sj} satisfying the constraint
that G is nonnegative definite. Derive the conditional distribution of
X̃i|Xi, where Xi is the p-dimensional vector of features for observation
i and X̃i the corresponding knockoffs.

6.2. Selective inference in the p=2 case. Suppose there are only two
features and (at a fixed value of λ) lasso selects a model such that β1 > 0
and β2 = 0. Express the condition that this model was selected in the
polyhedral form Ay ≤ b, giving expressions for A and b.

6.3. HIV drug resistance study. Although there are many drugs that
have been approved for treating Human Immunodeficiency Virus (HIV)
infection, one of the hallmarks of the virus is its ability to rapidly mutate
and gain resistance to these drugs. In this study, isolates of HIV were
extracted from infected individuals and sequenced. These isolates were
also tested for their resistance to various drugs used in HIV therapy. The
scientific goal of the project is to determine which mutations are associ-
ated with drug resistance, thereby helping to develop new antiretroviral
drugs and to optimize the use of existing drugs.

The full study examined many drugs; the data set Rhee2006 contains
the results for one specific drug, Nelfinavir, a protease inhibitor, and the
presence of mutations in the protease gene, which potentially confer
resistance to the drug.

(a) Using a lasso-penalized linear regression model, choose three in-
ferential approaches to determine mutations that confer resistance
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to the drug Nelfinavir (e.g., marginal FDR, semi-penalized like-
lihood ratio test, stability selection, bootstrapping, sample split-
ting, knockoff filter, selective inference, covariance test). Write a
“Methods” paragraph that describes how you implemented each
approach (e.g., specific options you chose); roughly one or two
sentences per method.

(b) Write a “Results” paragraph that compares the overall number
of mutations found to be significant by each approach.

(c) Construct a figure that communicates the degree of resistance
conferred by each mutation determined to be significant (by a
method of your choice). The reader should be able to determine
from the figure that, say, P13.V was the third-most important
mutation in terms of conferring resistance.

(d) Find (at least) one mutation for which the methods do not agree:
one method indicates that there is significant evidence for the
mutation conferring resistance whereas another method indicates
that the evidence is not significant. Provide some commentary on
why you think the disagreement occurs. The commentary should
be more in-depth than “method A is more powerful than method
B”; why is this specific variable affected in the way that it is?



7

Inference for low-dimensional
parameters

7.1 Inference for treatment effects in the presence
of nuisance parameters

The penalized methods discussed in the previous chapters only yield
point estimates of the parameters, but do not provide a way for making
statistical inference.

In many important applications, the primary focus is on a low-
dimensional parameter. For example, in the YSPORE data analysis,
we are interested in the effect of BRAF inhibitors on prognosis; In the
analysis of TCGA data, we are mostly interested in a CNV’s effect on its
corresponding gene expression. Under Aim 1, we will develop methods
for the statistical inference of such low-dimensional effects in a class of
important models including the linear and generalized linear models.

Suppose that we have observations {(yi,xi, zi), i = 1, . . . , n}, iid real-
izations of (y,x, z), where y is a response variable, x is a d-dimensional
covariate of main interest, and z is a q-dimensional vector containing
possibly confounding variables. An important special case is in clinical
trials or observational studies where x is a binary covariate representing
two treatments and z includes genomic measurements and other poten-
tial risk factors. The goal is to estimate the effect of x, denoted by β,
while taking into account the effect of z, denoted by η.

We are interested in the case where q is large, possibly much larger
than the sample size n.

Consider the linear regression model

y = Xθ + Zξ + ε,

where X is an n× d design matrix of covariates of main interest, Z is an
n× q matrix of other covariates that are of less interest but may also be
related to y. To obtain valid inference about θ, it is necessary to take
into account the effects of Z in the model. So the problem is to estimate
θ in the presence of the nuisance parameter ξ.

157



158 High-Dimensional Regression Modeling

We first consider the case where the combined design matrix (X,Z)
is full column rank. The least squares estimator

(θ̂, ξ̂) = argmin
θ,ξ

Q(θ, ξ) =
1

2n
∥y −Xθ − Zξ∥2. (7.1)

The solution can be calculated using the general result for least squares
by considering the combined parameter (θ, ξ) and the combined design
matrix (X,Z). However, it is instructive to consider the structure of the
problem and focus on θ, the parameter of main interest. We describe
three ways to solve this minimization problem and obtain the estima-
tor of θ: (a) direct solution of the minimization problem; (b) profile
least squares; (c) efficient score approach. These will provide a basis for
the methods for estimating the low-dimensional parameter θ in high-
dimensional models.

(a) Direct solution. To directly solve (7.1), we calculate the partial
derivatives of Q(θ, ξ) with respect to θ and ξ and set them to zero. This
leads to the normal equations{

XT (y −Xθ − Zξ) = 0

ZT (y −Xθ − Zξ) = 0
(7.2)

Solving the second equation gives ξ = (ZTZ)−1ZT (y −Xθ). Thus

Zξ = Z(ZTZ)−1ZT (y −Xθ).

Let PZ = Z(ZTZ)−1ZT be the projection matrix into the column space
of Z and let QZ = In −PZ, where In is an n× n identity matrix.

With these notation, we can write

Zξ = PZ(y −Xθ).

Substituting this into the first equation of (7.2) gives

XTQZ(y −Xθ) = 0. (7.3)

It follows that
θ̂ = (XTQZX)−1XTQZy, (7.4)

(b) Profile least squares. The profile approach is a helpful way to
solve a joint minimization problem

min
θ∈Rd,ξ∈Rq

Q(θ, ξ),
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where Q can be a general statistical criterion, including the least squares
criterion in (7.1) This approach is based on the idea that a joint mini-
mization problem can be solved successively as follows

min
θ∈Rd,ξ∈Rq

Q(θ, ξ) = min
θ∈Rd
{Q(θ) ≡ min

ξ∈Rq
Q(θ, ξ)}.

For a given θ, let
ξ(θ) = argmin

ξ∈Rq

Q(θ, ξ).

The profiled criterion for θ is

Q(θ) = Q(θ, ξ(θ)).

The profiled estimator of θ is

θ̂ = argmin
θ∈Rd

Q(θ).

Then the estimator of ξ is ξ̂ = ξ(θ̂).
For the Q given in (7.1), for a given θ, the value of ξ that minimizes

Q(θ, ·) is simply the OLS estimator with y−Xθ as the response vector
and Z as the design matrix, that is,

ξ̂(θ) = (ZTZ)−1ZT (y − Zθ).

Thus
y − Zξ̂(θ)− Zθ = (In − Z(ZTZ)−1ZT )(y −Xθ).

This can be written as

y − Zξ̂(θ)−Xθ = QZ(y −Xθ).

Substituting this into (7.1) to get the profile least squares criterion for
θ,

Q(θ) ≡ Q(θ, ξ̂(θ) =
1

2n
∥QZ(y −Xθ)∥2.

Thus the corresponding normal equation is

(QZX)T (y −Xθ) = 0.

This is exactly the same as (7.3) and leads to the same estimator of θ
as (7.4) from the direct solution.

The roles of θ and ξ can be reversed in the profiling. That is, first for
a given ξ we obtain the profile least squares estimator θ̂(ξ). Then use
the same calculation as above to obtain the profile least squares criterion
for ξ

Q(ξ) ≡ Q(θ(ξ), ξ) =
1

2n
∥QX(y − Zξ)∥2. (7.5)
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Let
ξ̂ = argmin

ξ∈Rq

Q(ξ).

Then the OLS estimator of θ is

θ̂ = (XTX)−1XT (y −Xξ̂).

It can be verified that this expression is the same as that given in (7.4).
It turns out it is more convenient to modify this way of profiling for

a high-dimensional nuisance parameter ξ.

Efficient score approach. The score functions for θ and ξ are

Q̇θ(θ, ξ) ≡
∂

∂θ
Q(θ, ξ) =− 1

n
XT (y −Xθ − Zξ) = − 1

n
XTε

Q̇ξ(θ, ξ) ≡
∂

∂ξ
Q(θ, ξ) =− 1

n
ZT (y −Xθ − Zξ) = − 1

n
ZTε

To calculate the efficient score function for θ, we need to find the pro-
jection of Q̇θ(θ, ξ) onto the linear space spanned by Q̇ξ(θ, ξ). That is,
we need to find a q × d matrix A that minimizes

E∥Q̇θ(θ, ξ)−AT Q̇ξ(θ, ξ)∥2.

Using the expressions given above, this amounts to finding A that min-
imizes

E∥XTε−ATZTε∥2

Since EεεT = σ2In, it is equivalent to finding A that minimizes

n∑
i=1

∥xi −AT zi∥2. (7.6)

Thus A must satisfy

−2
n∑

i=1

(xi −AT zi)z
T
i = 0.

Note that
∑n

i=1 xiz
T
i = XTZ and

∑n
i=1 ziz

T
i = ZTZ, this equation can

be written as
XTZ−ATZTZ = 0.

Therefore,
AT = XTZ(ZTZ)−1.
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So the efficient score function for θ is

Q̇θ(θ, ξ)−AT Q̇ξ(θ, ξ) = −
1

n
(XT −ATZT )(y −Xθ − Zξ) (7.7)

Since

XT −ATZT = XT −XTZ(ZTZ)−1ZT = XT (In −PZ) = XTQZ.

The efficient score function can be written as

Q̇θ(θ, ξ)−AT Q̇ξ(θ, ξ) = −
1

n
XTQZ(y −Xθ).

The efficient score estimator is the solution to the (efficient score) equa-
tion

XTQZ(y −Xθ) = 0.

7.2 Semi-penalized estimator

Now suppose the n × d design matrix X is full column rank, but the
n × q design matrix Z is not full column rank. This can happen when
d is small relative to n, but q is large or even larger than n. This is the
case where X consists of a few covariates of main interest, but Z contains
a large number possibly confounding covaraites. In this case, the three
approaches described above for estimating θ no longer work. It is natural
to apply penalized approach to dealing with the high-dimensionality of
Z. Specifically, we consider a semi-penalized least squares criterion

1

2n
∥y −Xθ − Zξ∥2 +

q∑
j=1

P (ξj ;λ). (7.8)

An important feature of this criterion is that θ is not penalized. Indeed,
since the main interest is in making statistical inference about θ, there
is no need to impose sparsity on it. Also, not penalizing θ will reduce
bias and lead to an estimator that is asymptotically normal. This will
make inference about this parameter possible.

Using a similar argument as in deriving the second form of profile
least squares estimator of θ, for a given ξ, the OLS estimator of θ is

θ̂(ξ) = (XTX)−1XT (y − Zξ). (7.9)

Substituting this expression into (7.8) yields the penalized profile least
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squares criterion

1

2n
∥QX(y − Zξ)∥2 +

q∑
j=1

P (ξj ;λ). (7.10)

Indeed, we can also start from (7.5) directly by imposing a penalty func-
tion on ξ to get a regularized estimator of ξ, then obtain an estimator
of θ through (7.9).

The criterion (7.10) can be written in a standard penalized least
squares form by letting y∗ = QXy and Z∗ = QXZ,

1

2n
∥y∗ − Z∗ξ)∥2 +

q∑
j=1

P (ξj ;λ).

The R package ncvreg can be used to compute the solution path

ξ̂(λ) = argmin
ξ∈Rq

1

2n
∥y∗ − Z∗ξ)∥2 +

q∑
j=1

P (ξj ;λ).

Then for a given λ the estimator of θ is

θ̂(λ) = (XTX)−1XT (y − Zξ̂(λ)).

The main computational task in this procedure in computing the solution
path ξ̂(λ).

An alternative expression for θ̂ that sheds some insights into the
properties of this estimator is as follows. Let Ŝ(λ) = {j : ξ̂j(λ) ̸= 0} be
the number of nonzero elements in ξ̂(λ). For simplicity, write Ŝ = Ŝ(λ).
For A ⊂ {1, . . . , q}, let ZA be the matrix consisting of the columns of
Z whose indices are in A. Denote the projection matrix into the column
space of ZA by PA = ZA(Z

T
AZA)

−1ZT
A. Let QŜ = I − PŜ , and let

ΣŜ = ZT
Ŝ
ZŜ/n. It is shown in Section 7.7 that θ̂ can also be written as

θ̂(λ) = (XTQŜX)−1XTQŜy−(X
TQŜX)−1XTZŜΣ

−1

Ŝ
Ṗ (ξ̂Ŝ ;λ), (7.11)

where the second term on the right hand side represents the bias intro-
duced by penalization and correlation between X and ZŜ .

If the nonzero coefficients of ξ are bigger than γλ and the estimator
ξ̂Ŝ is consistent so that ξ̂j ≥ γλ for all j ∈ Ŝ with high probability, then
since the derivative of MCP

Ṗ (t;λ) = λ{1− |t|/(γλ)}+sign(t),

we have Ṗ (βŜj
;λ) = 0 with high probability. In addition, under suitable
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conditions the MCP estimator is selection consistent in the sense that Ŝ
equals S ≡ {j : ξj ̸= 0} with high probability. Thus

θ̂ ≈ (XTQSX)−1XTQSy = θ + (XTQSX)−1XTQSε.

It follows that β̂ is approximately distributed as N(θ, σ2(XTQSX)−1).
It is important to note that the above calculation also shows that

the use of Lasso in the semi-penalized estimation will not lead to root-n
consistent and asymptotically normal estimator of β.

7.3 Regularized efficient score estimator

When Z has full column rank, the minimizer of (7.6) is well defined and
unique. According to (7.7), the efficient score is

− 1

n
(XT −ATZT )(y −Xθ − Zξ)

where A minimizes
n∑

i=1

∥xi −AT zi∥2.

However, in q > n models, the solution is not unique.
First consider the case where d = 1, so xi is a scalar, and we write it

as xi. Then A is a q × 1 column vector. We write this vector as a.
An approach is to regularize this projection by considering

1

2n

n∑
i=1

(xi − aT zi)
2 +

q∑
j=1

P (aj ;λ). (7.12)

Let

â = argmin
a∈Rq

1

2n

n∑
i=1

(xi − aT zi)
2 +

q∑
j=1

P (aj ;λ). (7.13)

The efficient score function is

Ψ(θ) =
1

n

n∑
i=1

(yi − xiθ − zTi ξ)(xi − aT zi).

The regularized version is

Ψ̃(θ) =
1

n

n∑
i=1

(yi − xiθ − zTi ξ̃)(xi − âT zi).
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The efficient score estimator is the solution to the equation

Ψ̃(θ) = 0.

This gives

θ̂ =

∑n
i=1(yi − zTi ξ̃)(xi − âT zi)∑n

i=1(xi − âT zi)xi
.

This can be rewritten as

θ̂ = θ̃ +

∑n
i=1(yi − xiθ̃ − zTi ξ̃)(xi − âT zi)∑n

i=1(xi − âT zi)xi

7.4 Efficient score and Wald tests

For testing H0 : θ = θ0, we consider the regularized efficient score statis-
tic

S =
1

n

n∑
i=1

(yi − xiθ0 − zTi ξ̂0)(xi − aT zi).

Here ξ̂0 is the estimator obtained under H0, that is,

ξ̂0 = argmin
ξ

1

2n
∥y − xθ0 − Zξ∥2 + λ∥ξ∥1,

and â is given in (7.13).

7.5 Applications

7.5.1 Genetic factors of longevity study

7.5.2 Breast cancer gene expression study

7.6 Theoretical properties

7.6.1 Semi-penalized estimator

Define

(θ̃, ξ̃) = argmin
θ∈Rd,ξ∈Rq

{ 1

2n
∥y −Xθ − Zξ∥2, ξSc = 0}
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Then

θ̃ = (XTQSX)−1XTQSy = θ + (XTQSX)−1XTQSε.

Thus θ̃ has a multivariate normal distribution with

Eθ̃ = θ,V(θ̃) = σ2(XTQSX)−1.

We first state a result when the penalized criterion (7.8) is convex.
This necessarily requires p < n, but allows p → ∞ as n → ∞. Let
cmin = min{cj : 1 ≤ j ≤ p}, where cj is the smallest eigenvalue of
ZTQXZ/n. Let wo = max{wo

k : k ∈ S}, where (wo
k, k ∈ S) are the diag-

onal elements of (ZTQXZ/n)−1. Denote the smallest nonzero coefficient
by β∗ = min{|βo

j | : βo
j ̸= 0, 1 ≤ j ≤ p}. Denote the cardinality of S by

|S|.

Theorem 7.1. Suppose that ε1, . . . , εn are independent and identi-
cally distributed as N(0, σ2). Also, suppose that (a) γ > 1/cmin; (b)
for a small ϵ > 0, β∗ > γλ + σ

√
(2/n)wo log(|S|/ϵ); and (c) λ ≥

σ
√
4 log pmaxj≤p ∥xj∥/n. Then,

P{∪pj=1(Ŝj ̸= Sj)} ≤ 3ϵ and P{∪pj=1(β̂j(λ) ̸= β̃j)} ≤ 3ϵ.

This theorem shows that in the convex case, the SPIDR estimator
is asymptotically ideal, meaning that it equals the ideal estimator with
high probability. As a consequence, it is asymptotically normal. The con-
ditions are mild. The normality assumption on the errors is mainly used
for bounding the tail probabilities of the error distribution. This assump-
tion can be relaxed. Condition (a) guarantees that the SPIDR criterions
in are strictly convex to ensure unique solution. Condition (b) requires
that the nonzero coefficients not be too small so that it is possible to
separate them from zero in the presence of random noise. Condition (c)
requires the penalty to be proportionally greater than the noise level to
prevent false selection of null variables. For standardized predictors with
∥xj∥2 = n, this condition simplifies to λ ≥ σ

√
(4/n) log p. Conditions

(b) and (c) are related, a bigger λ requires a bigger β∗.
We now consider the high-dimensional cases where p ≫ n and the

criterions are nonconvex. We require the sparse Riesz condition (SRC,
Zhang and Huang (2008)) on the the matrices QjX. Specifically, we
assume there exist constants 0 < c∗ ≤ c∗ <∞ and integer d∗ ≥ |S|(K∗+
1) with K∗ = c∗/c∗ − 1/2 such that

0 < c∗ ≤ ∥QjXAj
u∥2/n ≤ c∗ <∞, ∥u∥2 = 1, (7.14)

for every Aj ⊂ {1, . . . , p} \ {j} with |Aj ∪ Sj | ≤ d∗, for all 1 ≤ j ≤ p.



166 High-Dimensional Regression Modeling

Theorem 7.2. Suppose that ε1, . . . , εn are independent and identically
distributed as N(0, σ2). Also, suppose that (a) the SRC (7.14) holds
with γ ≥ c−1

∗
√

4 + c∗/c∗; (b) for a small ϵ > 0, β∗ ≥ γ2
√
c∗λ +

σ
√

(2/n)wo log(p|S|/ϵ); (c) λ ≥ σ
√
(4 log(p/ϵ)maxj≤p ∥xj∥/n. Then

P{∪pj=1(Ŝj(λ̂) ̸= Sj)} ≤ 3ϵ, and P{∪pj=1(β̂j(λ̂) ̸= β̃j)} ≤ 3ϵ.

Therefore, P{∪pj=1(Ŝj(λ̂) ̸= Sj)} → 0 and P{∪pj=1(β̂j(λ̂) ̸= β̃j)} → 0 as
ϵ→ 0.

The SRC (7.14) ensures that the model is identifiable in a lower-
dimensional space that contains the underlying model. When p > n, the
smallest eigenvalue of X ′

jQjXj/n is always zero. But the requirement
c∗ > 0 only concerns d∗ × d∗ diagonal submatrices of X ′

jQjXj/n. By
examining the conditions (b) and (c), for standardized predictors with
∥xj∥ =

√
n, we can have log(p|S|/ϵ) = o(n) or p = ϵ exp(o(n))/|S|. Thus

for sparse models with |S| small relative to n, Theorem 7.2 shows that
the asymptotic idealness property of the SPIDR estimators continues
to hold in high-dimensional settings under the SRC and other suitable
conditions.

Theorems 7.1 and 7.2 are stated for fixed predictors. For random
predictors, the conditions involving the predictors such as the SRC (7.14)
need to hold with high probability.

7.7 Technical details

Verification of (7.11). The solution to (7.8) satisfies{
X ′

Ŝj
(y −XŜ θ̂Ŝ − ZŜj

ξ̂Ŝ) = nṖ (ξ̂Ŝ ;λ),

x′
j(y −Xθ̂ − ZŜ ξ̂Ŝ) = 0.

The first equation gives

θ̂Ŝ = (XT
Ŝ
XŜ)

−1XT
Ŝ
(y −XŜ θ̂Ŝ) + n(XT

Ŝ
XŜ)

−1Ṗ (ξ̂Ŝ ;λ).

Thus
XŜ θ̂Ŝ = PŜ(y −Xθ̂) +XŜΣ

−1

Ŝ
Ṗ (ξ̂Ŝ ;λ).

Substituting this expression into the second equation gives

XT {QŜ(y −Xθ̂)−XŜΣ
−1

Ŝ
Ṗ (ξ̂Ŝ ;λ)} = 0.
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It follows that

θ̂ = (XTQŜX)−1XT (QŜy −XŜΣ
−1

Ŝ
Ṗ (ξ̂Ŝ ;λ).

This verifies (7.11).

7.8 Bibliographical notes

This section will include the bibliographical notes on the materials pre-
sented in this chapter.

Broadly speaking, the ideas in this chapter fall under the category
of what is known as debiasing as an approach to inference in penalized
likelihood problems. The basic idea behind debiasing is that frequentist
inference tends to work well if β̂j

.∼ N(βj ,SE
2). Penalized regression

estimates obviously do not have this property (with the possible excep-
tion of MCP/SCAD), so debiasing approaches attempt to construct an

estimate β̃j , based on β̂ in some way, for which approximate unbiased
normality holds.

Semi-penalized inference is one way to accomplish this: simply set
λj = 0 for βj . Many other approaches along these lines have been pro-
posed, instead using analytical means to develop a bias correction term:

� Zhang and Zhang (2014)

� Bühlmann (2013)

� van de Geer et al. (2013)

� Javanmard and Montanari (2014)

It is worth noting that these ideas are not exactly inferential approaches
for penalized regression estimates, but rather ways of using penalized
regression estimates as starting points for high-dimensional inference

7.9 Exercises
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Variable selection with FDR control

8.1 Variable selection as a multiple comparisons
problem

8.2 Estimating FDR under dependence

8.3 Regular estimation in high-dimensional models

8.4 Selection based on direct FDR control

8.5 Simultaneous confidence intervals for selected
coefficients

8.6 Applications

8.6.1 Genetic factors of longevity study

8.6.2 Breast cancer gene expression study
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Resampling approaches to inference

This chapter focuses on the related ideas of subsampling, resampling,
and sample splitting as ways to carry out inference for high-dimensional
models. These methods tend to be somewhat computationally intensive,
as they can involve fitting a high-dimensional model hundreds or thou-
sands of times, although with modern computing power, this is typically
not prohibitive except in the case of very large data sets.

Example 9.1. To illustrate the various methods in this chapter, we’ll
apply them to a simulated data set with the same basic construction as
that in Chapter 6. The basic dimensions are n = 100 and p = 60, with
σ2 = 1 and the coefficients as follows:

� Six variables with βj ̸= 0 (category “A”):

– Two variables with βj = ±1:
– Four variables with βj = ±0.5:

� Each of the six variables is correlated (ρ = 0.5) with two other
variables (i.e., 12 variables fall into this category) for which βj = 0
(“B”)

� The remaining 42 variables are pure noise, βj = 0 and indepen-
dent of all other variables (“C”)

9.1 Sample splitting

9.1.1 Single split

We begin with the simplest idea: sample splitting. We have already seen
the basic idea of sample splitting when we discussed the “refitted cross-
validation” approach to estimating σ2 (Section 2.6.1). The approach
involves two steps:
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(1) Take half of the data and fit a penalized regression model; typ-
ically this involves cross-validation as well for the purposes of
selecting λ.

(2) Use the remaining half to fit an ordinary least squares model using
only the variables that were selected in step (1).

Let’s split the data from Example 9.1 into two halves, D1 and D2,
each with n = 50 observations. Fitting a lasso model to D1 and using
cross-validation to select λ, we select 29 variables:

� 5 from category A

� 5 from category B

� 19 from category C

Note that the lasso does a reasonably good job at recovering all of
the features with βj ̸= 0, although it does fail to select one of them.
Here, the lasso also selects 24 variables with βj = 0. As we have seen
in several chapters now, the selection of a feature by the lasso (using
cross-validation to choose λ) is not very strong evidence that the feature
is important.

Thus, in the second stage of the sample-splitting procedure, we fit an
ordinary linear regression model to the selected variables: here, n = 50
and p = 29. When this is carried out, only two coefficients (the two with
βj = 1) are significant in the p < 0.05 sense. If we relax that to p < 0.1,
an additional variable with βj = 0.5 is found to be significant, as is a
variable from category “B” (as you might expect, the variable it was
correlated with was the one that was not selected by the original lasso).
Note that since the inference here is based on a classical linear model,
we have access to all of the usual inferential tools, including confidence
intervals. However, we only obtain confidence intervals for coefficients
selected in step (1).

The main advantage of the sample splitting approach is that it is
clearly valid: all inference is derived from classical linear model theory,
and by splitting the data into independent portions, we eliminate feature
selection bias. A minor obstacle is that one can have increased type I
errors if we fail to select all of the important variables at stage (1); we
see a hint of this in the above results, obtaining a borderline significant
result for a variable correlated with an unselected feature.

The main disadvantages of sample splitting are the lack of power due
to splitting the sample size in half, and the fact that results can vary
considerably depending on the split we choose. There is little that can
be done to resolve the first issue; the second disadvantage, however, can
be addressed by using multiple random splits.
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9.1.2 Multiple splits

A simple extension to the approach introduced in Section 9.1.1 is to
to apply the sample splitting procedure many times and “average”, in
some sense, over the splits. This will also help with the problem of failing
to select important variables in stage (1); although this may happen in
some splits, it is unlikely to happen consistently across a majority of the
splits. The major challenge with this approach, however, is how exactly
we average over results in which a covariate was not included in the
model.

One conservative remedy is to simply assign pj = 1 whenever j /∈ S,
the set of selected variables from stage 1. With this substitution in place,

we will have, for each variable, a vector of p-values p
(1)
j , . . . , p

(B)
j , where

B is the number of random splits, which we could aggregate in a variety
of ways. In the results that follow, we use the median, although more
complex summaries are also possible (Dezeure et al., 2015).
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FIGURE 9.1
p-values from the multi-split procedure. Four variables from A have p <
0.05.

The resulting p-values from this procedure are plotted in Figure 9.1.
Certainly, the results are much more stable if we average across sample
splits, although we still suffer from a lack of power to detect all the
variable in set A. It is possible to extend this idea to obtain confidence
intervals as well by inverting the hypothesis tests; see Dezeure et al.
(2015) for details.

Example 9.2. To get a feel for how conservative this approach is, let’s
apply it to the TCGA data (n = 536, p = 17, 322). Using the multiple-
splitting approach, only a single variable is significant with p < 0.05 (one
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other variable has p = 0.08; all others are above 0.1). This is in sharp
contrast to the results from Chapter 6, in which the false inclusion rate
approach was able to identify 52 features at an FIR of 5%.

9.2 Stability selection

One could argue that classical p-values are not the most relevant quantity
to consider for high-dimensional modeling. Perhaps we should be focused
instead on the consistency with which a penalized regression method
selects a certain variable. This is main idea behind stability selection:
we decide that a feature is significant if, in considering the sampling
distribution of β̂, the feature is selected a high proportion of the time.

Since in practice we have just a single data set, we will have to
“perturb” the data in some manner in order to obtain a reasonable ap-
proximation to the sampling distribution. This can be done in a variety
of ways, but the most familiar method is via resampling (i.e., bootstrap-
ping). Furthermore, there are a variety of ways of carrying out boot-
strapping, as we will see in Section 9.3. For simplicity, in this section we
will stick to the basic nonparametric bootstrap.

Letting πthr denote a specified threshold and π̂j(λ) the fraction of
times variable j is selected for a given value of λ, the set of stable variables
is defined as

{j : π̂j(λ) > πthr}.

Figure 9.2 depicts the application of stability selection to the data
from Example 9.1 for N = 100 bootstrap replications, with the six vari-
ables for which β ̸= 0 shown in red. For the sake of discussion, let’s focus
on λ = 0.4. The two variables with |β| = 1 clearly stand out, and are
selected in 100% of the resampled data sets. Two of the variables with
|β| = 0.5 stand out, and are selected over 70% of the time, but the other
two are difficult to distinguish from noise, being selected just 7% and
18% of the time, compared with 26% for the variable with β = 0.

The results of stability selection are clear for any given λ, although
deciding which λ to focus on is less straightforward. For example, if
we had decided to focus on λ = 0.15, then all of the features with
beta ̸= 0 have higher selection proportions than the features with β = 0.
Of course, whether λ = 0.15 would be attractive to us if we didn’t already
know which features were non-null is a good question. In practice, λ
for stability selection is often chosen in a subjective manner through
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FIGURE 9.2
Stability selection applied to the data from Example 9.1. Variables with
βj ̸= 0 are shown in red.

inspection of plots such as Figure 9.2, although it is possible to choose
λ based on FDR considerations (Exercise 9.1).
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FIGURE 9.3
Stability selection applied to the TCGA data. Features that exceed
πthr = 0.6 for any λ in red.

In high dimensions, another possible approach is to focus on features
that exceed πthr for any value of λ. For example, a stability selection plot
for the breast cancer TCGA data is shown in Figure 9.3. Here, features
that exceed πthr = 0.6 at any point along the regularization path are
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shown in red. Some of these variables surpass πthr at low values of λ,
then fall below the cutoff, others are almost never selected at high values
of λ and only pass πthr towards the end of the regularization path, but
all of the variables shown red are likely to be interesting – albeit perhaps
for different reasons.

9.3 Bootstrapping

The bootstrap is a widely used statistical method for obtaining confi-
dence intervals for estimates for which analytical, asymptotic formulas
are either inaccurate or difficult to derive. Can it be used for the lasso?

First, let’s define the bootstrap. There are two common approaches
to bootstrapping in the regression setting:

I need to fix or clarify the notation here, since I use x1 to refer to
the first column of X throughout the rest of the book.

� Pairwise bootstrap: Draw a bootstrap sample {(x∗
1, y

∗
1), . . . ,

(x∗
n, y

∗
n)} with replacement from the x, y pairs in the original data

{(x1, y1), . . . , (xn, yn)}.

� Residual bootstrap: Given an estimator β̂ and associated resid-
uals r1 = y1−xT

1·β̂, . . . , rn = yn−xT
n β̂, draw the bootstrap sample

{(x1, y
∗
1), . . . , (xn, y

∗
n)}, where

y∗i = xT
i β̂ + r∗i ,

with ri∗ sampled with replacement from {r1, . . . , rn}. Could also
be done in a parametric fashion. Note that X is essentially treated
as fixed here.

In this section, we will focus on the pairwise bootstrap, although
many of the same conclusions apply to the residual bootstrap as well.

Here we apply the pairwise bootstrap to the simulated data from Ex-
ample 9.1; confidence intervals for the coefficients which were nonzero
at λCV are shown in Figure 9.4. We can see immediately that the boot-
strap confidence intervals are not achieving the nominal 95% coverage
for the “A” variables with βj = ±1. Due to the shrinkage of the lasso,
the bootstrap intervals are also shrunk and systematically fall closer to
zero than the true coefficient values. In this example, only two of the
confidence intervals for features A1-6 include the true value of β.

However, for the “B” and “N” variables, the opposite phenomenon
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FIGURE 9.4
Pairwise bootstrap for the data from Example 9.1. Dots represent the
lasso estimates at λCV, dotted lines represent the true values of the
coefficients, solid lines represent 95% confidence intervals.

happens. All of these features have βj = 0; since we are shrinking towards
zero, this leads to coverage higher than the nominal rate. In this example,
the true value of 0 was covered by the 95% confidence interval in all 54
cases involving these coefficients.

This is a consistent pattern. Table 9.1 shows the results of repeating
this bootstrap approach to inference for N = 500 data sets with 10 “A”
variables, 20 “B” variables (each A variable being correlated with two
B variables) and 70 “N” variables (pure noise, although correlated with
each other: Cor(xi,xj) = 0.8|i−j|).

Bibliographical notes

Wasserman and Roeder (2009) studied sample splitting for a single split.
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TABLE 9.1
Bootstrap simulation

A B N Overall
Coverage 0.650 0.995 0.999 0.963

Meinshausen et al. (2009) extended this approach by considering multi-
ple random splits and combining the results. Dezeure et al. (2015) pro-
vides a comprehensive review of this approach and the details involved,
along with procedures for limiting the overall false discovery rate through
this form of testing and constructing confidence intervals.

Meinshausen and Buhlmann (2010) proposed stability selection. In
that paper, they obtained perturbed data by randomly selecting n/2 in-
dices from {1, . . . , n} without replacement. This is based on an argument
from Freedman (1977) that sampling n/2 without replacement is fairly
similar to resampling n with replacement.

Using the bootstrap to obtain confidence intervals for the lasso was
first investigated by Knight and Fu (2000), and later by Chatterjee and
Lahiri (2010, 2011). However, their work was primarily theoretical and
concerned with convergence of the bootstrap distribution to the sampling
distribution, rather than with coverage of confidence intervals, which was
our focus here.

Exercises

9.1. FDR bound for stability selection. Meinshausen & Bühlmann also
provide an upper bound for the expected number of false selections in
the stable set (i.e., variables with βj = 0 and π̂j(λ) > πthr), which can
be used to bound the FDR. In high dimensions, however, this bound
tends to be very conservative in practice and not particularly useful:
for example, in the TCGA data set, no variables can be stably selected
under this rule.
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10.1 The logistic regression loss function

10.2 Algorithms

10.3 Semi-penalized inference and regularized effi-
cient score estimation

10.4 Selection of λ using ROC curves

10.5 Prediction measures for logistic regression

10.6 Penalized logistic regression using glmnet and
ncvreg

10.6.1 Prediction of origin tissue in metastatic tumor
data

10.6.2 Case-control genetic association study of macular
degeneration

10.7 Other generalized linear models

10.7.1 Analysis of count data

10.8 *Theoretical properties

In essence, the results derived in Chapter 5 carry over to more general
likelihood functions such as the ones we describe in this chapter, al-
though additional regularity conditions are required. We stop short of
fully covering the theory for general likelihoods here, but it is worth
pointing out the necessary changes in regularity conditions. Generally
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speaking, the basic regularity conditions required to ensure asymptotic
normality of the MLE (NEEDS TO BE MORE SPECIFIC):

� common support

� identifiability

� the Fisher information I(β) is positive definite at β0

� all third derivatives of the log-likelihood are bounded

In the case where p > n, we require something called restricted strong
convexity (RSC), since since I(β) cannot be positive definite in that
case.

10.9 Exercises

10.1. Logistic regression: Score and Hessian. For the logistic regression
model

log
πi

1− πi
= xT

i β,

let η = Xβ and L denote the negative log-likelihood.

(a) Show that −∂L/∂η = y − π.

(b) Show that ∂2L/∂η2 = diag{πi(1− πi)}.

10.2. Quadratic approximation to loss functions. Let L(β) denote a
twice-differentiable loss function. Consider taking a second-order Tay-
lor series expansion of L about η̃, where η = Xβ and η̃ = Xβ̃ (L can
be thought of equivalently as a function of β or a function of η). Let
v and A denote the first and second derivatives of L with respect to η
(evaluated at η̃), and let z = η̃ −A−1v. Show that, up to a constant,

L(β) ≈ 1

2
(z−Xβ)TA(z−Xβ).

10.3. Standardization for multiclass logistic regression. As mentioned in
the chapter, the loss function L(β) does not change if we shift all K
coefficients for feature xj by a constant amount cj . However, this is not
true for the penalty term. Show that the value of c that minimizes

λ

K∑
k=1

|βkj − cj |
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is given by the sample median of {β1j , . . . , βKj} (more precisely, “any
sample median”, since the median is not necessarily unique). Do not as-
sume that there are no ties among the coefficients; with sparse regression,
there are likely to be multiple zero coefficients.

10.4. Classification of leukemia subtypes. There are six known categories
of acute lymphoblastic leukemia (ALL). Unfortunately, the accurate as-
signment of patients to these subtypes is a difficult and expensive pro-
cess, requiring intensive laboratory studies and the collective expertise
of a number of professionals (usually only available at major medical
centers).

In this study (Yeoh2002), bone marrow samples were obtained from
pediatric patients, and gene expression measurements were taken. The
goal is to determine ALL subtype from the gene expression data alone
– if this can be done accurately, it would make it possible to diagnose
ALL subtype at rural hospitals, in developing countries, etc.

(a) Fit a penalized multinomial regression model to the data and
select λ in an objective manner. How many nonzero coefficients are
in the model? Give both an overall total and the number broken
down by ALL subtype category. How many genes are included in
the model (keep in mind that a single gene can potentially have
multiple nonzero coefficients)?

(b) Summarize the accuracy of your selected model in terms of R2

and misclassification accuracy. Make sure these quantities are not
overestimated due to using the same data for both fitting and for
prediction.

(c) The object Yeoh2002$Xnew contains an additional 100 samples
of gene expression data. For each sample, predict the most likely
subtype as well as the probability of that subtype. How many of
these predictions do you expect will be correct?
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Cox regression

Mention AFTs? Stute? Rank? Cai2009?

11.1 Partial likelihoods in the Cox proportional haz-
ards model

11.2 Algorithms

11.3 Theoretical properties

11.4 Semi-penalized inference and regularized effi-
cient score estimation

11.5 Prediction measures for Cox regression

11.6 Fitting penalized Cox regression models in R

11.6.1 Genetic association study of suicidal behaviors

11.6.2 Glioblastoma and exon inclusion and skipping
counts
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Robust regression

12.1 Huber’s regression

12.2 Quantile regression

12.3 Algorithms

12.4 Theoretical properties

12.5 Semi-penalized inference and regularized pro-
jection score estimation

12.6 Fitting robust regressions using rqreg

12.6.1 Breast cancer gene expression data
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Grouped variable selection

191



192 High-Dimensional Regression Modeling

13.1 Group lasso, SCAD, and MCP

13.2 Standardization and orthonormalization

13.3 Algorithms

13.4 Theoretical properties

13.5 Fitting group penalized models with grpreg

13.5.1 Gene expression in Bardet-Biedl syndrome study

13.5.2 Case-control genetic association study of macular
degeneration

13.5.3 Multi-task learning example?

13.6 Overlapping groups

13.6.1 Pathway analysis of gene expression data in ol-
factory neurons

13.7 Exercises

13.1. Simulation comparing lasso and group lasso. Carry out a simu-

lation under three scenarios, each with n = 100, Xij
⊥⊥∼ N(0, 1), and

yi ∼ N(xT
i β, 1), where X consists of 100 groups and each group has

three elements (i.e., the total number of features is 300). The regression
coefficients β differ across the three scenarios:

(I) Four nonzero groups, each with three nonzero coefficients.

(II) Six nonzero groups, each with two nonzero coefficients.

(III) Twelve nonzero groups, each with one nonzero coefficient.
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Note that in each scenario, there are twelve nonzero coefficients. Set each
nonzero coefficient to ±

√
1/12 so that the overall SNR is equal to 1 in all

scenarios. Thus, in all three scenarios, β is identical in terms of size and
sparsity, the only thing that changes is the configuration with respect
to the groups. Note: the genDataGrp() function in the hdrm package
offers a convenient way to simulate data in this manner.

For each scenario, fit both a regular lasso and group lasso model.
Select λ either using cross-validation or by generating an independent
tuning data set (the latter involves slightly more coding, but is much
faster to run).

Create a table reporting the MSE for estimating β for each method
in each scenario, based on repeating this process for 100 independent
data sets. Comment briefly on the results and what they illustrate.
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Bi-level selection

14.1 Additive penalties and the sparse group lasso

14.2 Concave L1-norm group penalties

14.3 Algorithms

14.4 Bi-level selection using grpreg and SGL

14.4.1 Genetic association study involving rare variants

14.5 Exercises

195





15

Fusion penalties

15.1 The fused lasso

15.2 Algorithms

15.3 Fitting fused lasso models using flsa

15.3.1 Copy-number variation data from ovarian cancer
study

15.4 The quadratic fusion

15.4.1 Genome-wide association analysis of mouse stock
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Additive and semiparametric models

16.1 Variable selection in nonparametric additive
models

16.2 Structure estimation in partially linear models

16.3 Theoretical properties

16.4 Fitting additive and partially linear models us-
ing grpreg

16.4.1 Breast cancer gene expression data

16.5 Exercises

16.1. Group normalization and SPAM. The sparse additive modeling
(SPAM) approach of Ravikumar et al. (2009) proposes the estimation
of nonparametric additive regression models by finding the functions
{fj}pj=1 that minimize

1
2E

Y − p∑
j=1

fj(Xj)

2

+ λ

p∑
j=1

∥fj∥2,

where ∥fj∥22 = Ef2j (Xj). For any specific random sample, these expected
values are replaced by sample averages.

(a) Show that if the functions {fj}pj=1 are modeled via the basis ex-
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pansion fj(xij) =
∑K

k=1 hjk(xij)βjk, this is equivalent to a stan-
dard group lasso provided that the basis expansions are stan-
dardized such that 1

nH
⊤
j Hj = I prior to fitting, where the i, jth

element of Hj is hjk(xij).

(b) Suppose the basis matrices {Hj}pj=1 are not standardized so that
1
nH

⊤
j Hj = I prior to fitting the model. What does this mean in

terms of fitting sparse additive models?

16.2. Group lasso analysis of leukemia data. In this exercise, you will
reanalyze the leukemia data set Golub1999 originally described in Ex-
ample 6.1 using logistic regression. This time, however, you will construct
basis expansions for each feature to allow for nonlinear effects.

Using the function ns from the splines package, construct a three
degree-of-freedom basis expansion for each of the original features. You
should end up with a design matrix consisting of 7,129 groups, each with
3 members (p = 21, 387). Fit a group lasso-penalized logistic regression
model for leukemia type (ALL/AML) using this design matrix; select λ
using leave-one-out cross-validation.

(a) How many genes are selected? How does this compare to the num-
ber of genes selected by the ordinary lasso?

(b) Does allowing for nonlinear effects seem to improve accuracy? In
other words, in terms of deviance and misclassification error, does
this group lasso approach outperform the ordinary lasso?



17

Multivariate outcomes

17.1 Multivariate linear model

17.2 Seemingly unrelated regressions

17.3 Integrative analysis of multiple data sets

17.4 Structured selection

17.5 Algorithms

17.6 Theoretical properties

17.7 Applications

17.7.1 Genes related to multiple cancers

17.7.2 Regulation of gene expression in the mammalian
eye
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Variable selection for interactions

18.1 Hierarchical formulation

18.2 Algorithms

18.3 Fitting using hierNet

18.4 Fitting using glinternet

18.4.1 Gene-gene interactions in the longevity study

18.4.2 Gene-environment interactions in the longevity
study

18.5 Exercises

18.1. Spam detection. Unsolicited commercial e-mail (“spam”) greatly
diminishes the value of electronic communication in general, and it is
desirable to remove as much of it as possible automatically. The spam

data set contains information on 3,000 e-mails, including whether or not
it was spam as well as 57 numeric features extracted from the e-mail
(see ?spam for details).

(a) Fit a lasso-penalized logistic regression model to the data. Now,
noting that many of the features are right-skewed, apply a trans-
formation designed to reduce this skewness and refit the model
with these new, transformed predictors. Does the transformation
improve the prediction accuracy of the model? If so, continue to
use this transformation for the remainder of the problem.
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(b) Fit three models to the spam data: (1) a lasso with main effects
only (2) a lasso with all main effects and pairwise interactions (3) a
latent variable group lasso (glinternet) model with main effects
and pairwise interactions. For each model, report the number of
features selected (broken down by main effects / interactions) as
well as the prediction accuracy (with respect to misclassification)
of the model.

(c) For the best-performing model in part (b), how many spam e-
mails in the test set are incorrectly classified as “not spam”? How
many non-spam e-mails are incorrectly classified as “spam”? In
general, the second kind of mistake (sending important e-mails to
a spam folder) is much worse than the first. Suppose we considered
the second sort of error as 10 times worse than the first, and
reclassified as to minimize the total “weighted” loss. How do the
numbers of incorrect classifications in the test set change?
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