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Introduction to Best Subset
Selection



Best Subset Selection

o1 2
cmin[ly = XgIl; + 2|18l

- Where H,BHO = X.; 1,2 o) is the l0-pseudo norm

- This function is discontinuous at 0 which causes difficulty with
optimization
— The traditional method of solving this problem is to fit a model for

each combination of covariates and then select the model that
resulted in the smallest value of the objective function

- However, there have been many recent advances that have
allowed for much faster computation for this problem
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Best Subset Selection Cont.

 The best subset selection estimator can instead be found by
solving the following problem

.1 2
~min|ly - XBI[; s.¢.|1B1], < k

- Fork = 0,1, ...,p and the best subset selection estimator for a
given A will be one of these p + 1 models
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Recent developments in best subset selection
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Notation

« F(B) :%“_’y —X,B”z + /10“,3”0 +/11“18”1 +/12“’B”z

— T
Bi=(y —X;uXiB;) Xi= "X =X X XiB;
- The support (S) is the set of nonzero coefficients

- U> denotes a p x p matrix with the following properties
—- (U°B);=p;ifi€s
— (U°p); =0ifi ¢S.

- The set {1, 2, ..., p} is denoted by [p]
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Recent developments in best subset selection

Classes of Minima



CW Minima

- A vector 8* is a coordinate-wise (CW) minima if for every i € [p],

B; is a minimizer of F(£*) with respect to the it" coordinate with all
the other coordinates held fixed

- The single coordinate solution is given by the following
thresholding operator

(

151 B — A 220
{Slgn('gl)1+2/12} lf1+2/12> 1+ 24,

- —A 21
T(ﬁi,lo,ll,lz) - < {O} f |fl_|_| 2 /121 < 1 + ZOAZ
18] 16| - 240
{OSlgn(:Bl)1+2/'{2 f1+2/12 1+2&2

B 10T\



PSI(k) and FSI(k) Minima

« A vector 8* with support S is a partial swap-inescapable minima of order k
EP%(k) minima) if for every S; € S, S, € S¢, with |S;| < k, |S,| < k, the following
olds

F(B*) < min F (5" — U>1B* + U*2p)

- A vector B* with support S is a full swap-inescapable minima of order k (FSI(k)
minima) if for every S; € S, S, € S¢, with |S;| < k, |S,| < k, the following holds

F(B*) < min F(B* — US1B* + UG/SDVS2p)

B(s/s1)us;
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Ordering of Minima

« FSI(k) c PSI(k) c CW
- This means that FSI(k) minima are the strongest, followed by
PSI(k) minima and CW minima are the weakest

- When k is sufficiently large FSI(k) and PSI(k) minima coincide
with the class of global minimizers, however as we increase k
we are also increasing the difficulty of the problem and thus it
will take longer to find the solution
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Recent developments in best subset selection

Algorithms



CW Minima

- Since the CW minima is based on doing updates one

coordinate at a time, it would make sense to use coordinate
descent to perform the updates

- The authors propose the use of coordinate descent (CDSS)
with the following modified thresholding operator

( _ _
B = B =2 22
{Slg"(ﬁi) 1+24, Y1321, = |T+2,

T(B}, Ao, A1, 22) = 3

B = A 229
\{O} YTv24, < T2
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Spacer Steps

- In the coordinate descent algorithm, they also introduce the use of
spacer steps

- Spacer steps entail the following process for some fixed number C

— When a support S has been encountered Cp-many times, then a spacer step
is performed

— Reoptimize over each coordinate in S with the following thresholding
operator T(f;, 0,44, 15)
— Reset the counter for this support

- These are necessary for their proof of convergence to a CW minima
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PSI(k) Minima

- In order to converge to a PSI(k) minima, we again perform
CDSS and after it converges, we check if there is a feasible

solution to the following problem

ﬂrglirg F(B' —US'B' + US2B) s.t.5, € 5,5, €S, |S11 < k, 1S, <k
901,92

- If there is a solution to this problem, then we update the
support and

- If there is no feasible solution, then stop and declare
convergence
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FSI(k) Minima

- In order to converge to an FSI(k) minima, we again perform
CDSS and after it converges, we check if there is a feasible
solution to the following problem

ﬁngilg F(B! —US1BL + UB/SVUYS28) 5.1.5, € 5,5, € S, |S1| < k,|S,] < k
901,92

- If there is a solution to this problem, then we update the
support and # and repeat both steps again

- If there is no feasible solution, then stop and declare
convergence
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Comparison of Methods

Constant Correlation, p = 0.9, n = 250, p = 1000, k' = 25, SNR = 300
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Extended comparisons of best subset selection

Relaxed lasso
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A (Simplified) Relaxed Lasso

* X4, I1s a submatrix of X that only contains the columns of the
nonzero coefficients for the lasso solution for the given 4

- The authors use the following relaxed lasso estimator
- el (A, y) = yBIse () + (1 —y)BHE ()
~BS @) = (XF,X,,) XY

vy €10,1]
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Extended comparisons of best subset selection

Simulations



Variable Definitions

* n, p: problem dimensions

- s: sparsity level (number of nonzero coefficients)
- Beta-type: pattern of sparsity

- p: predictor autocorrelation level

- v: Signal to noise ratio (SNR) level
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Four Beta-Type Settings

Beta-type 1 Beta-type 2 Beta-type 3 Beta-type 5
* s components equal » lneiiets
> P G  Thefirsts components equal to
to 1 at roughly :
 Thefirsts components are 1
equally-spaced :
o components equal to nonzero values * The rest decaying
indices between :
1and p 1 equally-spaced exponentlally to 0,
« Therest are zero between 10 and 0.5 0.5'75, fori=s+
* Therest are zero
 Therest equalto 0 1,..,p
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Steps

|.  Defined coefficients according to s and beta-type

Il. Drew the rows of the predictor matrix X € R™*? i.i.d. from
N,(0,%), where £ € RP*? has entry (i, j) equal to pli=/

IIl. Drew the response vector Y € R™ from N, (XS, a%1), with a2

T
defined to meet the desired SNR level, i.e. g% = 0530
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Steps

V. Ran the lasso, relaxed lasso, forward stepwise selection, and
best subset selection on the data each over a wide range of
tuning parameter values

V. Record metrics of interest

 Relative risk, relative test error, proportion of variance explained (PVE),
number of nonzeros

VI. Repeat steps li-v a total of 10 times, and average the results
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Configuration

- Considered following problem settings
—Low:n =100,p = 10,s =5
—Medium: n = 500,p = 100,s =5
—High-5:n =50,p = 1000,s =5
—High-10: n = 100,p = 1000,s = 10

- Predictor autocorrelation considered p = 0,0.35, 0.7

- The following values for the SNR and corresponding PVE

were considered
SNE 005 009 014 025 042 0.1 1.22 207 3.52 600

PVE | 0.05 0.08 012 0.20 0.30 042 055 0.67 0.78 0.86
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Tuning

of A

lasso

Tuned over 10 values
of y equally spaced
from0Oto1

Setting Lasso Relaxed Lasso Forward Selection and
Best Subset Selection
Low Setting Tuned over 50 values | Same 50 values as Tuned over subsets of

size
k=20,..,10

All other Settings

Tuned over 100 values
of A

Same 100 values as
lasso

Same 10 values of y

Tuned over subsets of
size
k=0,..,50

identically generated

Tuning performed by minimizing prediction error on an external validation set of size n which was independently and
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Setting BS F'S Lasso RlLasso
low (n =100, p =10, s = 5) 3.43  0.006 0.002 0.002
medium (n = 500, p = 100, s = 5) ~ 120 min  0.818  0.009 0.009
high-5 (n = 50, p = 1000, s = 5) ~ 126 min 0.137 0.011 0.011
high-10 (n = 100, p = 1000, s = 10) | =~ 144 min  0.277  0.019 0.021

- Rather than approximating the exact solution
as seen in previous paper, these authors try to
find the exact solution for best subset selection

- Despite recent advances in best subset
selection, it can still be very slow, so a time limit
of 3 minutes was set for each subset size

Computational
Costs

g IOWA



Low setting: n =100, p=10, s =5
Correlation p = 0.35, beta-type 2
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Medium setting: n = 500, p =100, s =5
Correlation p = 0.35, beta-type 2
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High-5 Setting

Beta-type 2

Relative risk (to null madel

Prapartion of variance explained

High-5 setting: n = 50, p = 1000, 5 = 5
Correlation p = (.35, beta-type 2
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High-10 Setting

Beta-type 2

Relative risk (ta null madel

Frapaortion af variance e plained

High-10 setting: n = 100, p = 1000, s = 10
Correlation p = 0.35, beta-type 2
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Extended comparisons of best subset selection

Discussion



Conclusions

- Best subset - Lasso gives better  + Relaxed lasso - Comparable PVE
selection may have results than best performs as well results suggest
underperformed subset selection in as or better than that best
due to 3-minute the low SNR range all other methods : practice is to
per problem and worse in the — Utilized y to get favor the method
instance per subset =~ high SNR range heavy shrinkage = that is easiest to

: ST " : from lasso when
Size restriction — The transition point compute

between specific useful and

— Particularly at high reverses it when
SNR levels in the SNR depends on it is not useful
high settings problerrj

dimensions
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Appendix



Classes of Minima

- Coordinate-wise (CW) minima
— Solutions where optimizing with respect to one coordinate at a time
cannot improve the objective function
- Partial swap-inescapable minima of order k (PSI(k) minima)

— Solutions where removing any subset of size at most k of the support,
adding a subset of size at most k to the support, and optimizing over
the newly added subset cannot improve the objective function

- Full swap-inescapable minima of order k (FSI(k) minima)

— Solutions where removing any subset of size at most k of the support,
adding a subset of size at most k to the support, and optimizing over
the new support cannot improve the objective function
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A (Simplified) Relaxed Lasso

* A,: set that contains all the indices of where the nonzero
variables are for the lasso solution of a given A

* X4, Is a submatrix of X that only contains the columns of the
nonzero coefficients for the lasso solution for the given A

- The authors use the following relaxed lasso estimator
- Brelax(d,y) =yl (D) + (1 —y)B- (D)
~ LS ) = (X, Xa,) XEY

v €[0,1]
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min f{H] + Ag Z Zj

.0,z

I'E[pl
s.t. 0=p=D>lepi(1—z)+ > e
icS ic5t
Solution to —Mz; < Bi < Mz, VieS
PSI(k) <K
Subproblem ; o=
>z = S| —k
€5

pieR, Vies§*
z; €{0,1}, Vie LUJ
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min f(6) + Ag Z Zi

a0,z f‘—'l.ﬂ]
—Mz; < 6; < Mz;, Vie ,JUJ
Solution t z:<w;, VYieSsS
olution 10
FSI(k) 2% <k
Subproblem ’
w; = |S|—k

0;eR, Vielp|
zi €{0,1}, Vie|p]
w; €40,1} Vies.
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