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Introduction to Best Subset 
Selection



Best Subset Selection

• min
𝛽

1

2
𝑦 − 𝑋𝛽

2

2
+ 𝜆 𝛽

0

• Where 𝛽
0
= σ𝑗 1(𝛽𝑗≠ 0) is the 𝑙0-pseudo norm

• This function is discontinuous at 0 which causes difficulty with 
optimization 
‒ The traditional method of solving this problem is to fit a model for 

each combination of covariates and then select the model that 
resulted in the smallest value of the objective function

• However, there have been many recent advances that have 
allowed for much faster computation for this problem
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Best Subset Selection Cont.

• The best subset selection estimator can instead be found by 
solving the following problem 

• min
𝛽

1

2
𝑦 − 𝑋𝛽

2

2
𝑠. 𝑡. 𝛽

0
≤ 𝑘

• For 𝑘 = 0, 1, … , 𝑝 and the best subset selection estimator for a 
given 𝜆 will be one of these 𝑝 + 1 models
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Best Subset Selection

Recent developments in best subset selection



Notation

• 𝐹 𝛽 =
1

2
𝑦 − 𝑋𝛽

2

2
+ 𝜆0 𝛽

0
+ 𝜆1 𝛽

1
+ 𝜆2 𝛽

2

2

• ഥ𝛽𝑖 = 𝑦 − σ𝑗≠𝑖𝑋𝑗𝛽𝑗
𝑇
𝑋𝑖 = 𝑦𝑇𝑋𝑖 − σ𝑗≠𝑖𝑋𝑗

𝑇𝑋𝑖𝛽𝑗

• The support (S) is the set of nonzero coefficients

• 𝑈𝑆 denotes a 𝑝 × 𝑝 matrix with the following properties
‒ 𝑈𝑆𝛽 𝑖 = 𝛽𝑖 if 𝑖 ∈ 𝑆

‒ 𝑈𝑆𝛽 𝑖 = 0 if 𝑖 ∉ 𝑆.

• The set {1, 2, … , 𝑝} is denoted by [𝑝]
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Classes of Minima

Recent developments in best subset selection



CW Minima
• A vector 𝛽∗ is a  coordinate-wise (CW) minima if for every  𝑖 ∈ [𝑝], 
𝛽𝑖
∗ is a minimizer of 𝐹 𝛽∗ with respect to the 𝑖𝑡ℎ coordinate with all 

the other coordinates held fixed

• The single coordinate solution is given by the following 
thresholding operator

ത𝑇 ҧ𝛽𝑖
∗, 𝜆0, 𝜆1, 𝜆2 =

𝑠𝑖𝑔𝑛 ҧ𝛽𝑖
∗

ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
𝑖𝑓

ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
>

2𝜆0
1 + 2𝜆2

0 𝑖𝑓
ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
<

2𝜆0
1 + 2𝜆2

0, 𝑠𝑖𝑔𝑛 ҧ𝛽𝑖
∗

ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
𝑖𝑓

ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
=

2𝜆0
1 + 2𝜆2
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PSI(k) and FSI(k) Minima

• A vector 𝛽∗ with support S is a partial swap-inescapable minima of order k
(PSI(k) minima) if for every 𝑆1 ⊆ 𝑆, 𝑆2 ⊆ 𝑆𝐶 , with 𝑆1 ≤ 𝑘, 𝑆2 ≤ 𝑘, the following 
holds

𝐹 𝛽∗ ≤ min
𝛽𝑆2

𝐹(𝛽∗ − 𝑈𝑆1𝛽∗ + 𝑈𝑆2𝛽)

• A vector 𝛽∗ with support S is a full swap-inescapable minima of order k (FSI(k) 
minima) if for every 𝑆1 ⊆ 𝑆, 𝑆2 ⊆ 𝑆𝐶 , with 𝑆1 ≤ 𝑘, 𝑆2 ≤ 𝑘, the following holds

𝐹 𝛽∗ ≤ min
𝛽(𝑆/𝑆1)∪𝑆2

𝐹(𝛽∗ − 𝑈𝑆1𝛽∗ + 𝑈 𝑆/𝑆1 ∪𝑆2𝛽)
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Ordering of Minima

• 𝐹𝑆𝐼 𝑘 ⊂ 𝑃𝑆𝐼 𝑘 ⊂ 𝐶𝑊

• This means that 𝐹𝑆𝐼(𝑘) minima are the strongest, followed by 
𝑃𝑆𝐼 𝑘 minima and CW minima are the weakest 

• When k is sufficiently large 𝐹𝑆𝐼(𝑘) and 𝑃𝑆𝐼 𝑘 minima coincide 
with the class of global minimizers, however as we increase k
we are also increasing the difficulty of the problem and thus it 
will take longer to find the solution
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Algorithms

Recent developments in best subset selection



CW Minima

• Since the CW minima is based on doing updates one 
coordinate at a time, it would make sense to use coordinate 
descent to perform the updates

• The authors propose the use of coordinate descent (CDSS) 
with the following modified thresholding operator

𝑇 ҧ𝛽𝑖
∗, 𝜆0, 𝜆1, 𝜆2 =

𝑠𝑖𝑔𝑛 ҧ𝛽𝑖
∗

ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
𝑖𝑓

ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
≥

2𝜆0
1 + 2𝜆2

0 𝑖𝑓
ҧ𝛽𝑖
∗ − 𝜆1

1 + 2 𝜆2
<

2𝜆0
1 + 2𝜆2
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Spacer Steps

• In the coordinate descent algorithm, they also introduce the use of 
spacer steps

• Spacer steps entail the following process for some fixed number C
‒ When a support S has been encountered Cp-many times, then a spacer step 

is performed

‒ Reoptimize over each coordinate in S with the following thresholding 
operator 𝑇( ҧ𝛽𝑖 , 0, 𝜆1, 𝜆2)

‒ Reset the counter for this support

• These are necessary for their proof of convergence to a CW minima
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PSI(k) Minima

• In order to converge to a PSI(k) minima, we again perform 
CDSS and after it converges, we check if there is a feasible 
solution to the following problem 

min
𝛽,𝑆1,𝑆2

𝐹 𝛽𝑙 − 𝑈𝑆1𝛽𝑙 + 𝑈𝑆2𝛽 𝑠. 𝑡. 𝑆1 ⊆ 𝑆, 𝑆2 ⊆ 𝑆𝑐 , 𝑆1 ≤ 𝑘, 𝑆2 ≤ 𝑘

• If there is a solution to this problem, then we update the 
support and 𝛽

• If there is no feasible solution, then stop and declare 
convergence

15



FSI(k) Minima

• In order to converge to an FSI(k) minima, we again perform 
CDSS and after it converges, we check if there is a feasible 
solution to the following problem 

min
𝛽,𝑆1,𝑆2

𝐹 𝛽𝑙 − 𝑈𝑆1𝛽𝑙 + 𝑈(𝑆/𝑆1)∪𝑆2𝛽 𝑠. 𝑡. 𝑆1 ⊆ 𝑆, 𝑆2 ⊆ 𝑆𝑐 , 𝑆1 ≤ 𝑘, 𝑆2 ≤ 𝑘

• If there is a solution to this problem, then we update the 
support and 𝛽 and repeat both steps again

• If there is no feasible solution, then stop and declare 
convergence
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Comparison of Methods
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Relaxed lasso

Extended comparisons of best subset selection



A (Simplified) Relaxed Lasso

• 𝑋𝐴𝜆: is a submatrix of 𝑋 that only contains the columns of the 

nonzero coefficients for the lasso solution for the given 𝜆

• The authors use the following relaxed lasso estimator 

‒ መ𝛽𝑟𝑒𝑙𝑎𝑥 𝜆, 𝛾 = 𝛾 መ𝛽𝑙𝑎𝑠𝑠𝑜 𝜆 + 1 − 𝛾 መ𝛽𝐿𝑆(𝜆)

‒ መ𝛽𝐿𝑆 𝜆 = 𝑋𝐴𝜆
𝑇 𝑋𝐴𝜆

−1
𝑋𝐴𝜆
𝑇 𝑌

• 𝛾 ∈ [0, 1]
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Simulations 

Extended comparisons of best subset selection



Variable Definitions

• 𝑛, 𝑝: problem dimensions

• 𝑠: sparsity level (number of nonzero coefficients)

• Beta-type: pattern of sparsity

• 𝜌: predictor autocorrelation level

• 𝜈: Signal to noise ratio (SNR) level
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Four Beta-Type Settings

Beta-type 1 Beta-type 5Beta-type 3Beta-type 2

• 𝑠 components equal 
to 1 at roughly 
equally-spaced 
indices between 
1 and 𝑝

• The rest are zero

• The first 𝑠
components equal to 
1

• The rest are zero

• The first 𝑠
components are 
nonzero values 
equally-spaced 
between 10 and 0.5

• The rest equal to 0

• The first 𝑠
components equal to 
1

• The rest decaying 
exponentially to 0, 

0.5𝑖−𝑠, 𝑓𝑜𝑟 𝑖 = 𝑠 +
1,… , 𝑝
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Steps

I. Defined coefficients according to 𝑠 and beta-type

II. Drew the rows of the predictor matrix 𝑋 ∈ ℝ𝑛×𝑝 i.i.d. from 

𝑁𝑝(0, Σ), where Σ ∈ ℝ𝑝×𝑝 has entry (𝑖, 𝑗) equal to 𝜌 𝑖−𝑗

III. Drew the response vector 𝑌 ∈ ℝ𝑛 from 𝑁𝑛 𝑋𝛽0, 𝜎
2𝐼 , with 𝜎2

defined to meet the desired SNR level, i.e. 𝜎2 =
𝛽0
𝑇Σ𝛽0

𝜈
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Steps

IV. Ran the lasso, relaxed lasso, forward stepwise selection, and 

best subset selection on the data each over a wide range of 

tuning parameter values

V. Record metrics of interest

• Relative risk, relative test error, proportion of variance explained (PVE), 

number of nonzeros

VI. Repeat steps ii-v a total of 10 times, and average the results
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Configuration

• Considered following problem settings
‒ Low: 𝑛 = 100, 𝑝 = 10, 𝑠 = 5

‒ Medium: 𝑛 = 500, 𝑝 = 100, 𝑠 = 5

‒ High-5: 𝑛 = 50, 𝑝 = 1000, 𝑠 = 5

‒ High-10: 𝑛 = 100, 𝑝 = 1000, 𝑠 = 10

• Predictor autocorrelation considered 𝜌 = 0, 𝟎. 𝟑𝟓, 0.7

• The following values for the SNR and corresponding PVE 
were considered 
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Tuning

Setting Lasso Relaxed Lasso Forward Selection and 
Best Subset Selection

Low Setting Tuned over 50 values 
of 𝜆

Same 50 values as 
lasso

Tuned over 10 values 
of 𝛾 equally spaced 
from 0 to 1

Tuned over subsets of 
size
𝑘 = 0,… , 10

All other Settings Tuned over 100 values 
of 𝜆

Same 100 values as 
lasso

Same 10 values of 𝛾

Tuned over subsets of 
size
𝑘 = 0,… , 50

Tuning performed by minimizing prediction error on an external validation set of size 𝑛 which was independently and 

identically generated
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Computational 
Costs

• Rather than approximating the exact solution 
as seen in previous paper, these authors try to 
find the exact solution for best subset selection 

• Despite recent advances in best subset 
selection, it can still be very slow, so a time limit 
of 3 minutes was set for each subset size
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Discussion 

Extended comparisons of best subset selection



Conclusions

• Comparable PVE 
results suggest 
that best 
practice is to 
favor the method 
that is easiest to 
compute 

• Best subset 
selection may have 
underperformed 
due to 3-minute  
per problem 
instance per subset 
size restriction
‒ Particularly at high 

SNR levels in the 
high settings

• Lasso gives better 
results than best 
subset selection in 
the low SNR range 
and worse in the 
high SNR range
‒ The transition point 

between specific 
SNR depends on 
problem 
dimensions 

• Relaxed lasso 
performs as well 
as or better than 
all other methods
‒ Utilized 𝛾 to get 

heavy shrinkage 
from lasso when 
useful and 
reverses it when 
it is not useful
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Appendix



Classes of Minima

• Coordinate-wise (CW) minima
‒ Solutions where optimizing with respect to one coordinate at a time 

cannot improve the objective function

• Partial swap-inescapable minima of order k (PSI(k) minima)
‒ Solutions where removing any subset of size at most k of the support, 

adding a subset of size at most k to the support, and optimizing over 
the newly added subset cannot improve the objective function

• Full swap-inescapable minima of order k (FSI(k) minima)
‒ Solutions where removing any subset of size at most k of the support, 

adding a subset of size at most k to the support, and optimizing over 
the new support cannot improve the objective function
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A (Simplified) Relaxed Lasso

• 𝐴𝜆: set that contains all the indices of where the nonzero 
variables are for the lasso solution of a given  𝜆

• 𝑋𝐴𝜆: is a submatrix of 𝑋 that only contains the columns of the 

nonzero coefficients for the lasso solution for the given 𝜆

• The authors use the following relaxed lasso estimator 

‒ መ𝛽𝑟𝑒𝑙𝑎𝑥 𝜆, 𝛾 = 𝛾 መ𝛽𝑙𝑎𝑠𝑠𝑜 𝜆 + 1 − 𝛾 መ𝛽𝐿𝑆(𝜆)

‒ መ𝛽𝐿𝑆 𝜆 = 𝑋𝐴𝜆
𝑇 𝑋𝐴𝜆

−1
𝑋𝐴𝜆
𝑇 𝑌

• 𝛾 ∈ [0, 1]
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Solution to 
PSI(k) 

Subproblem
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Solution to 
FSI(k) 

Subproblem
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