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Introduction

 Motivation:

— “Dense” confounding in a high-
dimensional setting

— N observations

— p predictor variables X
— g (unobserved) confounding variables H

— Unobserved confounding is a problem

for many high-dimensional regression
methods

- Makes interpretation of coefficients
difficult

 Particularly an issue in genetic
studies
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Big idea

1. Perform a spectral transformation of the observed
data X that shrinks the largest singular values in
some way and create a new X

2. The perturbation caused by confounding, Xb, will
be mostly in the direction of the first few singular X_3
values of X, so Xb will be very small

3. The deconfounded signal, Xﬂ, will not be shrunk
nearly as much

4.  Estimates will now more closely reflect the true X_2
effect of X with the effect of confounding greatly
reduced.
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The Confounding Model

Y =XB+HS+v (2.1)

¢ Where X € R™*? is the matrix of predictors and H € R™*? represents the hidden confounding variables,
which exhibit correlation with X.

¢ Assume that X and H have i.i.d. rows and are jointly Gaussian and that v € R"
is a vector of sub-Gaussian errors with mean zero and standard deviation o,, independent of X and H.

1
« Since the model does not change under the transformation H « HCov(H) 26,
we can assume without loss of generality that Cov(H) = I,

Note that by L, projection, X can be written as:

X=HT +E (2.2)
« Where I' € R?*P such that Cov(H,E) =0

* Columns of E are allowed to be correlated with covariance matrix g

Spectral Deconfounding via Perturbed Sparse Linear Models 4



The Perturbed Linear Model

Y =X(B+b)+e (2.3)

« Sparse coefficient vector  has been altered by the perturbation vector b € RP

+ Here assume that the rows of X are i.i.d. sub-Gaussian vectors with mean zero and covariance matrix X = Cov(X).

Relates to confounding model because we can rewrite (2.1) as:

Y = X(B + b) + (HS — Xb) + v
o

 Error givenby € = (H§ — Xb) + v, which by construction of b is uncorrelated with X and thus independent of X.

2
« o?=Var(H5§ —Xb+v) < ||6||2+05
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Spectral transformations

(dy/dy 0 ... 0
- X->X:=FX v 0 dy/dy ... O T
— Y-V :=FYy U T y
2] \/ % 2 ) ) .ﬂv ;
— [ =arg mﬁm{%“y _ X,B||2 + /1“’3”1 0 [__)~ oo dy/dy
D*

— By SVD, X can be rewritten UDVT with U orthonormal, so:

X=Fx=(UuDUu")ubv® =UDV"
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Spectral transformations

Lasso Trim

(a3

* The authors propose the “trim” transform: | %

— Jl- = min(d;, 7) , with the median singular value %%%c%
representing a “good choice” for T % g,

e QOther alternatives:

— PCA - effectively shrink the first few singular
values to zero

PCA Lava

7 %%%%m W&%

Puffer

Apd? : o
— Lava-d; = |—2"L solution to the optimization

problem proposed by a linear model with a
coefficient vector consisting of a dense and sparse

component

transformed singular values

OO OO OO OO D000

— Puffer - map all non-zero singular values to 1

0 10 20 30 40
index
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Main result

* For the model in (2.1) with max 2;; = O (1) and cond(Zg) = 0(1) and with 4,,;,(Z) bounded away from zero;
l

* Under certain assumptions about the data (A1) and a spectral transformation of the data (A2, A3)

1 .
Then for penalty level 1 = ¢ % , the £ -estimation error of the Lasso has the

following rate despite the presence of confounding:

—
gs logp

16 =1L, =00\ 7 |

 This is the same as the ¢, rate for the Lasso without confounding.
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Assumptions

(AI) Amin (F) — Amin(COU(X: H)) — Q(\/ﬁ)

Assume additionally that a spectral transformation with A,,,,(F) = 1 satisfies

(A2) Apax (X ) — Op (\/@
(A3) o5 = Qp(Amin (2))

© Oy = inf a’Ma
M “

llel|, =5l asl|, Fllasll,

; similar to our restricted eigenvalue condition

« Aisused in this article to refer to the singular values of a matrix, not the eigenvalues.
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Assumptions (in words)

(AI)Amin (F) — Amin(COU(X: H)) — Q(\/ﬁ)

o If % is 0,,(1), then A is Q,, (B), i.e. A has asymptotically at least the same rate as B.

+ 50 Apin (1) = Q(VB) © VB = Op(Anin(D) & P (VB > Amin(T)) > 0
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Assumptions (in words)

(A2) Aimax (X) = Op(VP)

(A3) p5 = U (Amin (D))

Spectral Deconfounding via Perturbed Sparse Linear Models



Proof

2
||Xb|| decreases as the
2

Theorem 2 -
_ 2 _ largest singular values of X
CZ ‘Xb ‘ are decreased

qb% nAi

19, <

\ The problem is shrinking
l \ the second term enough
without increasing the first
Standard bound for the ¢ decreases as the largest term.
£ -error of the Lasso singular values of X are
decreased
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Simulations

Generate data from the confounding model (2.1)
" Y=Xp+H6+v
" X=Hl+E

Parameters
— Take X = o£l,, where op = 2
-p=01,1111,0,..,0)

— For a bf{xed q of hidden confounders, sample I};; and 6; independently as standard normal random
variables

— Noise level 0 = 1 as the standard deviation of €
— Same as perturbed model, drawing rows of X from N(0, %) where X =TTT + L,

Feature size/sample size

— p=up to 600
—gq=uptob
— n=200

4096 independent simulations
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£, error “ﬁ — ,BH vs. number of predictors p
1

n=300, g=6, s=5, sigma=1 n=300, q=6, s=5, sigma=1

L1 error
L1 error

N S

P

P

p— 5550 m—ava Oracle PCA Puffer e Trim

— 2S5O e |ava Oracle PCA Puffer = Trim

Left plot: the penalty chosen by cross-validation

Right plot: penalty chosen by oracle value for which the estimation error is minimal
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£, error “ﬁ — ,BH VS. size of noise
1

p=600, n=200, q=6, s=5 p=600, n=200, g=6, s=5

L1 error
L1 error

sigma sigma

| NS5O e LaVa Oracle PCA Puffer wss= Trim

| 2550 == Lava Oracle PCA Puffer = Trim

Left plot: Confounding model
Right plot: Perturbed linear model
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£, error “ﬁ — ,BH vs. number of confounders g
1

p=600, n=200, s=5, sigma=1

L1 error

/7/ 1
4

q

— | 5550 we= |3va Oracle PCA PCA_3 PCA 9 Puffer s Trim
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£, error ‘ﬁA — ﬁ‘ vs. confounders, b = 0
1

Sparse linear model where ¥ = I''T + I, i.e. the confounding model where the
induced perturbation b is setto b = 0.

p=600, n=200, s=5, sigma=1 p=600, n=200, s=5, sigma=1

L1 error
L1 error

q q

—— 3550 wee= Lava Oracle PCA PCA_3 PCA_9 Puffer wes Trim | 3550 wees Lava Oracle PCA PCA 3 PCA_9 Puffer wes Trim

Left plot: Penalty chosen by CV

Right plot: Penalty chosen by the oracle value which minimizes #4-error
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¢, error ||f — ,BH vs. scale of perturbation b
1

p=600, n=200, s=5, sigma=1

L1 error

scaling factor for b

— 550 = Lava Oracle PCA Puffer we= Trim
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Application

Data from the GTEx Portal ( )

p =14,713 protein-coding genes from n = 491 samples.

Includes g = 65 proxies for “hidden confounders”
— Genotyping principal components
— PEER factors

Gene expression as quantified by amount of mRNA in cell created from each gene

Prior knowledge allows us to “regress out”* the confounders from X and create new X %)

* i.e. regress each column in X by g confounders, then use the residuals from these regressions in place of the original X.
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Application

Pick a random gene as your outcome Y. Remaining genes are X.

For a fixed value k, regress out first k given confounder proxies from X

For eachs = 1, ..., 20 apply a given method on X and X (X) with regularization parameter A chosen
as the largest value such that the support size of f equals a prespecified value s.

Measure Jaccard distance /(4,B) = % on the supports of S, and ,és(k)

i

B B

eg B =| b [ B =| b [=J (Supp([?s),supp(}(")))=§
bp bp
w) i)

* A = symmetric difference operator, i.e. A A B=elements in either A or B but not both v
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Application

n=491, p=14713, removed confounders=5

1.00+

i 8
= c
&z =
=] o
D p.so Dy
E B
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Q o
m Q
) -3
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support size
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n=491, p=14713, removed confounders=15
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-
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n=491, p=14713, removed confounders=5

T v
10 15
support size

— Lasso = Trim — Lava

n=491, p=14713, removed confounders=65

) 75 /——-/'

support size

= Lasso = Trim = Lava

Upper left: 5 confounders removed, one
randomly chosen response.

Upper right: 5 confounders removed,
averaged over 500 randomly chosen
responses.

Lower left: 15 confounders removed,
averaged over 500 randomly chosen
responses.

Lower right: 65 confounders
removed, averaged over 500 randomly
chosen responses.
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Discussion

* How realistic are the assumptions?
* Can they be tested?
* Why use Jaccard distance and not £; norm for application?
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