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Introduction

• Motivation:
‒ “Dense” confounding in a high-

dimensional setting

‒ 𝑁 observations

‒ 𝑝 predictor variables 𝑋

‒ 𝑞 (unobserved) confounding variables 𝐻

‒ Unobserved confounding is a problem 
for  many high-dimensional regression 
methods

• Makes interpretation of coefficients 
difficult

• Particularly an issue in genetic 
studies
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Big idea

1. Perform a spectral transformation of the observed 

data 𝐗 that shrinks the largest singular values in 

some way and create a new ෩𝐗

2. The perturbation caused by confounding, 𝐗𝐛, will 

be mostly in the direction of the first few singular 

values of 𝐗, so ෩𝐗𝐛 will be very small

3. The deconfounded signal, ෩𝐗𝜷, will not be shrunk 

nearly as much

4. Estimates will now more closely reflect the true 

effect of 𝐗 with the effect of confounding greatly 

reduced.
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The Confounding Model

𝑌 = 𝑋𝛽 + 𝐻𝛿 + 𝜈        (2.1)
• Where 𝑋 ∈ ℝ𝑛×𝑝 is the matrix of predictors and 𝐻 ∈ 𝑅𝑛×𝑞  represents the hidden confounding variables, 

which exhibit correlation with 𝑋.

• Assume that 𝑋 and 𝐻 have i.i.d. rows and are jointly Gaussian and that 𝜈 ∈ ℝ𝑛 
is a vector of sub-Gaussian errors with mean zero and standard deviation 𝜎𝜈, independent of 𝑋 and 𝐻.

• Since the model does not change under the transformation 𝐻 ← 𝐻Cov 𝐻 −
1

2𝛿, 
we can assume without loss of generality that Cov 𝐻 = 𝐼𝑞

Note that by 𝐿2 projection, 𝑋 can be written as:

𝑋 = 𝐻Γ + 𝐸         (2.2)
• Where Γ ∈ ℝ𝑞 ×𝑝 such that Cov 𝐻, 𝐸 = 0

• Columns of 𝐸 are allowed to be correlated with covariance matrix Σ𝐸

4



Spectral Deconfounding via Perturbed Sparse Linear Models

The Perturbed Linear Model

𝑌 = 𝑋 𝛽 + 𝑏 + 𝜖        (2.3)
• Sparse coefficient vector 𝛽 has been altered by the perturbation vector 𝑏 ∈ ℝ𝑝

• Here assume that the rows of 𝑋 are i.i.d. sub-Gaussian vectors with mean zero and covariance matrix Σ = Cov 𝑋 .

Relates to confounding model because we can rewrite (2.1) as:

𝑌 = 𝑋 𝛽 + 𝑏 + 𝐻𝛿 − 𝑋𝑏 + 𝜈      

• Error given by 𝜖 = 𝐻𝛿 − 𝑋𝑏 + 𝜈, which by construction of 𝑏 is uncorrelated with 𝑋 and thus independent of 𝑋.

• 𝜎2 = 𝑉𝑎𝑟 𝐻𝛿 − 𝑋𝑏 + 𝜈 ≤ 𝛿
2

2
+ 𝜎𝜈

2
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Part of the confounding that cannot be explained by 𝑋

Part of the confounding effect 𝐻𝛿 that is correlated with 𝑋
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Spectral transformations
“The idea is to first transform our data by applying some specific linear transformation 

𝐹: ℝ𝑛 → ℝ𝑛 and then perform the Lasso algorithm.”

‒ 𝑋 → ෨𝑋 ≔ 𝐹𝑋

‒ 𝑌 → ෨𝑌 ≔ 𝐹𝑌

‒ መ𝛽 = arg min
𝛽

{
1

𝑛
෨𝑌 − ෨𝑋𝛽

2

2
+ 𝜆 𝛽

1

‒ By SVD, 𝑋 can be rewritten 𝑈𝐷𝑉 𝑇  with 𝑈 orthonormal, so:

෨𝑋 = 𝐹𝑋 = 𝑈 ෩𝐷∗𝑈𝑇 𝑈𝐷𝑉𝑇 = 𝑈 ෩𝐷𝑉𝑇

“Lasso performs best when the predictors are uncorrelated and when the errors are independent. 

Therefore a good choice needs to find a good balance between a well behaved error term ǁ𝜖 = 𝐹𝜖, well 

behaved design matrix ෩𝑋, and well behaved perturbation term ෨𝑋𝑏
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Spectral transformations

• The authors propose the “trim” transform:

‒ ሚ𝑑𝑖 = min 𝑑𝑖 , 𝜏 , with the median singular value 
representing a “good choice” for 𝜏

• Other alternatives:

‒ PCA – effectively shrink the first few singular 
values to zero

‒ Lava - 𝑑𝑖 =
𝑛𝜆2 𝑑𝑖

2

𝑛𝜆2+𝑑𝑖
2 - solution to the optimization 

problem proposed by a linear model with a 
coefficient vector consisting of a dense and sparse 
component

‒ Puffer – map all non-zero singular values to 1
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Main result

• For the model in (2.1) with max
𝑖

Σ𝑖𝑖 = 𝒪 (1) and 𝑐𝑜𝑛𝑑 Σ𝐸 = 𝒪(1) and with 𝜆𝑚𝑖𝑛 Σ  bounded away from zero;

• Under certain assumptions about the data (A1) and a spectral transformation of the data (A2, A3)

Then for penalty level 𝜆 ≍ 𝜎
log 𝑝

𝑛
 , the ℓ1-estimation error of the Lasso has the 

following rate despite the presence of confounding:

• This is the same as the ℓ1 rate for the Lasso without confounding.
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Assumptions

(A1) 𝜆𝑚𝑖𝑛 Γ = 𝜆𝑚𝑖𝑛 𝐶𝑜𝑣 𝑋, 𝐻 = Ω( 𝑝)

Assume additionally that a spectral transformation with 𝜆𝑚𝑎𝑥 𝐹 = 1 satisfies

(A2) 𝜆𝑚𝑎𝑥
෨𝑋 = 𝒪𝑝( 𝑝)

(A3) 𝜙෩Σ
2 = Ω𝑝 𝜆𝑚𝑖𝑛 Σ

• 𝜙𝑀 ≔ inf
𝛼

1
≤5 𝛼𝑆 1

𝛼𝑇𝑀𝛼
1

𝑠
𝛼𝑆 1

 ; similar to our restricted eigenvalue condition

• 𝜆 is used in this article to refer to the singular values of a matrix, not the eigenvalues.
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Assumptions (in words)

(A1)𝜆𝑚𝑖𝑛 Γ = 𝜆𝑚𝑖𝑛 𝐶𝑜𝑣 𝑋, 𝐻 = Ω 𝑝

“Confounding is dense in the sense that each confounding variable is correlated with many 

predictors… if the confounding is dense in the confounding model, then the induced coefficient 

perturbation in the underlying perturbed linear model is small.”

• If
𝐵

𝐴
 is 𝒪𝑝 1 , then A is Ω𝑝 𝐵 , i.e. A has asymptotically at least the same rate as B.

• So 𝜆𝑚𝑖𝑛 Γ = Ω 𝑝 ⇔ 𝑝 = 𝒪𝑝 𝜆𝑚𝑖𝑛 Γ ⇔ 𝑃 𝑝 > 𝜆𝑚𝑖𝑛 Γ → 0
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Assumptions (in words)

(A2) 𝜆𝑚𝑎𝑥
෨𝑋 = 𝒪𝑝 𝑝

“In the confounding model we have  Σ = Γ𝑇 Γ + Σ𝐸 , i.e. the covariance matrix of X has additional 

low-rank component Γ𝑇 Γ, which causes the top several singular values of X  to be very large… 

[this assumption] requires the transformed singular values [of ෨𝑋] to be of order 𝑝.”

(A3) 𝜙෩Σ
2 = Ω𝑝 𝜆𝑚𝑖𝑛 Σ

“This assumption says that the compatibility constant 𝜙෩𝛴 does not substantially decrease after 

applying our transformation F. We want to show that by shrinking the singular values we have 

not shrunk our signal X too much.”
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Proof

Theorem 2
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𝜙෩Σ
2 decreases as the largest 

singular values of 𝑋 are 
decreased

෨𝑋𝑏
2

2
 decreases as the 

largest singular values of 𝑋 
are decreased 

The problem is shrinking 
the second term enough 
without increasing the first 
term.Standard bound for the 

ℓ1-error of the Lasso
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Simulations
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• Generate data from the confounding model (2.1)
▪ 𝑌 = 𝑋𝛽 + 𝐻𝛿 + 𝜈
▪ 𝑋 = 𝐻Γ + 𝐸

• Parameters
‒ Take Σ𝐸 = 𝜎𝐸

2𝐼𝑝 , where 𝜎𝐸 = 2

‒ 𝛽 = 1,1,1,1,1, 0, … , 0
‒ For a fixed 𝑞 of hidden confounders, sample Γ𝑖𝑗  and 𝛿𝑖  independently as standard normal random 

variables
‒ Noise level 𝜎 = 1 as the standard deviation of 𝜖
‒ Same as perturbed model, drawing rows of 𝑋 from 𝑁(0, Σ) where Σ = Γ𝑇 Γ + 𝐼𝑝

• Feature size/sample size
‒ p = up to 600

‒ 𝑞 = up to 6
‒ n=200

• 4096 independent simulations
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 error vs. number of predictors 
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Left plot: the penalty chosen by cross-validation

Right plot: penalty chosen by oracle value for which the estimation error is minimal
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 error vs. size of noise
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Left plot: Confounding model

Right plot: Perturbed linear model
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 error vs. number of confounders 
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 error vs. confounders, 
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Sparse linear model where Σ = Γ𝑇Γ + 𝐼𝑝 , i.e. the confounding model where the 

induced perturbation 𝑏 is set to 𝑏 = 0.

Left plot: Penalty chosen by CV

Right plot: Penalty chosen by the oracle value which minimizes ℓ1-error
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 error vs. s
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Application
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• Data from the GTEx Portal (http://gtexportal.org)

• 𝑝 =14,713 protein-coding genes from 𝑛 = 491 samples.

• Includes 𝑞 = 65 proxies for “hidden confounders”

‒ Genotyping principal components

‒ PEER factors

• Gene expression as quantified by amount of mRNA  in cell created from each gene

• Prior knowledge allows us to “regress out”* the confounders from 𝑋 and create new 𝑋(𝑘)

* i.e. regress each column in 𝑋 by 𝑞 confounders, then use the residuals from these regressions in place of the original X.
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Application

20

• Pick a random gene as your outcome 𝑌. Remaining genes are 𝑋.

• For a fixed value 𝑘, regress out first 𝑘 given confounder proxies from 𝑋

• For each 𝑠 = 1, … , 20 apply a given method on 𝑋 and 𝑋(𝑘) with regularization parameter 𝜆 chosen 
as the largest value such that the support size of መ𝛽 equals a prespecified value 𝑠.

• Measure Jaccard distance 𝐽 𝐴, 𝐵 =
𝐴△𝐵

𝐴∪𝐵
 on the supports of መ𝛽𝑠  and መ𝛽𝑠

(𝑘)

e.g. , 

* △ = symmetric difference operator, i.e. 𝐴 △ 𝐵= elements in either A or B but not both v
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Application

21

Upper left: 5 confounders removed, one 
randomly chosen response.

Upper right: 5 confounders removed, 
averaged over 500 randomly chosen 
responses.

Lower left: 15 confounders removed, 
averaged over 500 randomly chosen 
responses.

Lower right: 65 confounders 
removed, averaged over 500 randomly 
chosen responses.
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Discussion
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• How realistic are the assumptions?

• Can they be tested?

• Why use Jaccard distance and not ℓ1 norm for application?
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