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A problem, a paper, and a Puffer fish

Puffer fish
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What makes a matrix ill-conditioned?
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Generalized least squares is not always a good
preconditioner
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Sign consistency and the irrepresentable condition

Definition of sign consistency

The Lasso is sign consistent if there exists a sequence λn such that,
P(sign(β̂(λn)) = sign(β∗)) → 1, as n → ∞.

The irrepresentable condition

The design matrix X satisfies the irrepresentable condition for β∗

if, for some constant η ∈ (0, 1],
∥X⊤

ScXS(X
⊤
S XS)

−1sign(β∗
S)∥∞ ≤ 1− η,

where S = {j : β∗
j ̸= 0} ⊂ {1, ..., p}
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Finding a better preconditioner connects back to the
irrepresentable condition

Many methods have been proposed to circumvent the
irrepresentable condition - concave penalty, adaptive lasso,
etc.

Preconditioning attempts to solve the problem from a
different angle: altering the shape of ∥Y − Xβ∥2

Definition of the Puffer transformation

Suppose X ∈ Rn×p has rank d = min{n, p}, then from SVD, we
have U ∈ Rn×d , V ∈ Rp×d , and diagonal matrix D ∈ Rd×d ,
then the Puffer transformation is F = UD−1U⊤
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The Puffer transformation

FX = UV⊤ - singular values of FX are all 1, which leads to
orthonormality

FY = (FX)β∗ + Fϵ, where Fϵ ∼ N(0, Σ̃ = σ2UD−2U⊤)

There are issues when any singular values of X approach 0, a
modified preconditioner will be introduced later
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Geometrical representation

β̂(c) = argminβ:∥β∥1≤c ∥Y − Xβ∥22
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Low dimension results

If n ≥ p and X is full rank, then (FX)⊤FX = I

Theorem of sign consistency after the Puffer transformation

Suppose that Y = Xβ∗ + ϵ with ϵ ∼ N(0, σ2I). Suppose that
n ≥ p and X has rank p. Further assume that
Λmin(

1
nX

⊤X) ≥ C̃min > 0. Let X̃ = UD−1U⊤X, Ỹ = UD−1U⊤Y,

and Σ̃ = σ2UD−2U⊤).
If minj∈S |β∗

j | > 2λ, then β̃(λ) =s β
∗ with probability greater than

1− 2p exp
{
−nλ2C̃min

2σ2

}
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Low dimension remarks

Suppose that C̃min > 0 is a constant. If p,minj∈S |β∗
j | and σ2

so not change with n, then choosing λ such that λ → 0 and
λ2n → ∞ ensures that β̃(λ) is sign consistent. One possible

choice is λ =
√

log n
n

If penj ’s are identical functions that have a cusp at zero, then
the solution selects the same sequence of models as
preconditioned correlation screening: β̂j ̸= 0, if
|cor(FY,FXj)| > λ

In high-dimensional scenario, FX is no longer orthogonal
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Generalized Puffer transformation uses a tuning parameter
to hem in singular values

Σ̃ = σ2UD−2U⊤

Definition of the Generalized Puffer transformation

Let X ∈ Rn×p be a design matrix with SVD X = UDV⊤. Define
g : R2 → R, τ ∈ R, and D̂ii =

g(Dii ,τ)
Dii

,

Fg ,τ = UD̂U⊤

Note: when g is the hard thresholding function
h(x , τ) = 1(x ≥ τ), then the spectral norm of Fh,τ is bounded
by 1

τ
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Dealing with the irrepresentable condition is like dealing
with mic feedback
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High dimension remarks

There is a tension between 1) satisfying the irrepresentable
condition and 2) limiting the amount of additional noise
created by the preconditioner

The generalized Puffer transformation can handle high
degrees of correlation among features

TL;DR of the main result for the generalized case: we can
make the lower bound on the probability P(β̃(λ) =s β

∗)
converge to 1 by choosing the tuning parameter so that λ2τ2n
grows faster than log(p)
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Simulations

The rows of X are mean zero Gaussian vectors with constant
correlation ρ

The Puffer preconditioned Lasso simultaneously achieves fewer
false positives, fewer false negatives, and smaller MSE in β
across all values of ρ

Xij = (Gi/α)Zij , where Zij are iid standard normal, and Gi are
independent Gamma r.v. with shape α and rate 1

As α → 0, the standard deviation of Gi/α grows
The generalized Puffer transformed Lasso yields a better sign
estimator than both the Lasso and the Puffer preconditioned
Lasso

Other types of preconditioner
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Wrap up: discussion and take-aways

Preconditioning can circumvent the irrepresentable condition
and achieve sign consistency

In low dimensions, the Puffer transformation ensures the
irrepresentable condition; In high dimensions, the generalized
Puffer transformation satisfies the irrepresentable condition
with a high probability

Puffer fish video link
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High dim. simulation shows Puffer can powerfully reduce
correlation between features

where IC is the expression previously defined for the irrepresentable
condition. ICβ∗(X) < 1 → X satisfies the irrepresentable condition
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