## Preconditioning the Lasso for Sign Consistency: An overview

### Yujing Lu and Tabitha Peter

#### The University of Iowa, College of Public Health

May 08, 2023

- 4 伊 ト 4 ヨ ト 4 ヨ ト

Preconditioning (low dim)

High dimensional results

Discussion 0000

## A problem, a paper, and a Puffer fish



Puffer fish

Y. Lu and T. K. Peter High Dimensional (Sp 2023) Final Presentation 2 of 17

< D > < B > < E > < E >

Э

990

High dimensional results

### What makes a matrix ill-conditioned?

Consider systems

$$\begin{cases} x+y=2\\ x+1.001y=2 \end{cases} \text{ and } \begin{cases} x+y=2\\ x+1.001y=2.001 \end{cases}$$

The system on the left has solution x = 2, y = 0 while the one on the right has solution x = 1, y = 1. The coefficient matrix is called *ill-conditioned* because a small change in the constant coefficients results in a large change in the solution. A *condition number*, defined in more advanced courses, is used to measure the degree of ill-conditioning of a matrix ( $\approx 4004$  for the above).

イロト イヨト イヨト

## Generalized least squares is not always a good preconditioner

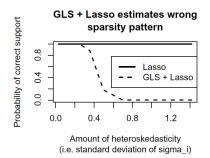


FIG 1. GLS acts as a bad preconditioner, making the design matrix ill-conditioned. Thus, correcting for the heteroskedasticity degrades the estimation performance. In this simulation, n = 200, p = 1000 and there are 10 nonzero elements in  $\beta^*$ . Appendix D contains further details on this simulation.

< □ > < 同 >

 $\exists \rightarrow$ 

- 4

## Sign consistency and the irrepresentable condition

#### Definition of sign consistency

The Lasso is sign consistent if there exists a sequence  $\lambda_n$  such that,  $\mathbb{P}(sign(\hat{\beta}(\lambda_n)) = sign(\beta^*)) \to 1$ , as  $n \to \infty$ .

#### The irrepresentable condition

The design matrix **X** satisfies the irrepresentable condition for  $\beta^*$ if, for some constant  $\eta \in (0, 1]$ ,  $\|\mathbf{X}_{S^c}^\top \mathbf{X}_S (\mathbf{X}_S^\top \mathbf{X}_S)^{-1} \operatorname{sign}(\beta_S^*)\|_{\infty} \leq 1 - \eta$ , where  $S = \{j : \beta_i^* \neq 0\} \subset \{1, ..., p\}$ 

## Finding a better preconditioner connects back to the irrepresentable condition

- Many methods have been proposed to circumvent the irrepresentable condition concave penalty, adaptive lasso, etc.
- Preconditioning attempts to solve the problem from a different angle: altering the shape of  $\|\mathbf{Y} \mathbf{X}\beta\|^2$

#### Definition of the Puffer transformation

Suppose  $\mathbf{X} \in \mathbb{R}^{n \times p}$  has rank  $d = \min\{n, p\}$ , then from SVD, we have  $\mathbf{U} \in \mathbb{R}^{n \times d}$ ,  $\mathbf{V} \in \mathbb{R}^{p \times d}$ , and diagonal matrix  $\mathbf{D} \in \mathbb{R}^{d \times d}$ , then the Puffer transformation is  $\mathbf{F} = \mathbf{U}\mathbf{D}^{-1}\mathbf{U}^{\top}$ 

## The Puffer transformation

- $\mathbf{FX} = \mathbf{UV}^{\top}$  singular values of  $\mathbf{FX}$  are all 1, which leads to orthonormality
- FY = (FX) $\beta^*$  + F $\epsilon$ , where F $\epsilon \sim N(\mathbf{0}, \tilde{\Sigma} = \sigma^2 \mathbf{U} \mathbf{D}^{-2} \mathbf{U}^{ op})$
- There are issues when any singular values of **X** approach 0, a modified preconditioner will be introduced later

イロト イポト イラト イラト

Preconditioning (low dim)

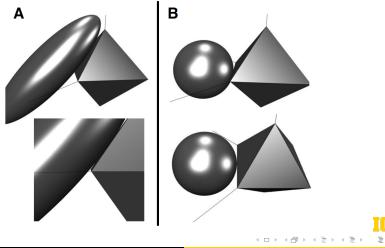
High dimensional results

Discussion 0000

900

## Geometrical representation

• 
$$\hat{oldsymbol{eta}}(c) = {\sf arg\,min}_{oldsymbol{eta}: \|oldsymbol{eta}\|_1 \leq c} \, \|oldsymbol{Y} - oldsymbol{X}oldsymbol{eta}\|_2^2$$



Y. Lu and T. K. Peter High Dimensional (Sp 2023) Final Presentation 8 of 17

### Low dimension results

• If  $n \ge p$  and **X** is full rank, then  $(\mathbf{FX})^{\top}\mathbf{FX} = \mathbf{I}$ 

Theorem of sign consistency after the Puffer transformation

Suppose that  $\mathbf{Y} = \mathbf{X}\beta^* + \epsilon$  with  $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$ . Suppose that  $n \geq p$  and  $\mathbf{X}$  has rank p. Further assume that  $\Lambda_{min}(\frac{1}{n}\mathbf{X}^{\top}\mathbf{X}) \geq \tilde{C}_{min} > 0$ . Let  $\tilde{\mathbf{X}} = \mathbf{U}\mathbf{D}^{-1}\mathbf{U}^{\top}\mathbf{X}$ ,  $\tilde{\mathbf{Y}} = \mathbf{U}\mathbf{D}^{-1}\mathbf{U}^{\top}\mathbf{Y}$ , and  $\tilde{\boldsymbol{\Sigma}} = \sigma^2\mathbf{U}\mathbf{D}^{-2}\mathbf{U}^{\top}$ ). If  $\min_{j \in S} |\beta_j^*| > 2\lambda$ , then  $\tilde{\beta}(\lambda) =_s \beta^*$  with probability greater than  $1 - 2p \exp\left\{-\frac{n\lambda^2\tilde{C}_{min}}{2\sigma^2}\right\}$ 



- 4 伊 ト 4 ヨ ト 4 ヨ ト

| Introduction | Preconditioning (low dim) | High dimensional results | Discussion |
|--------------|---------------------------|--------------------------|------------|
| 000          | 00000●                    |                          | 0000       |
| Low dimonsi  | on romorka                |                          |            |

- - Suppose that C
     <sup>˜</sup><sub>min</sub> > 0 is a constant. If p, min<sub>j∈S</sub> |β<sub>j</sub><sup>\*</sup>| and σ<sup>2</sup> so not change with n, then choosing λ such that λ → 0 and λ<sup>2</sup>n → ∞ ensures that β̃(λ) is sign consistent. One possible choice is λ = √ log n/n
  - If *penj*'s are identical functions that have a cusp at zero, then the solution selects the same sequence of models as preconditioned correlation screening: β<sub>j</sub> ≠ 0, if |*cor*(FY, FX<sub>j</sub>)| > λ
  - In high-dimensional scenario, FX is no longer orthogonal

 Introduction
 Preconditioning (low dim)
 High dimensional results
 Discussion

 Generalized Puffer transformation uses a tuning parameter

to hem in singular values

•  $\tilde{\Sigma} = \sigma^2 \mathbf{U} \mathbf{D}^{-2} \mathbf{U}^{\top}$ 

Definition of the Generalized Puffer transformation

Let  $\mathbf{X} \in \mathbb{R}^{n \times p}$  be a design matrix with SVD  $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ . Define  $g : \mathbb{R}^2 \to \mathbb{R}, \ \tau \in \mathbb{R}$ , and  $\hat{D}_{ii} = \frac{g(D_{ii}, \tau)}{D_{ii}}$ ,  $\mathbf{F}_{g,\tau} = \mathbf{U}\hat{\mathbf{D}}\mathbf{U}^{\top}$ 

• Note: when g is the hard thresholding function  $h(x, \tau) = \mathbb{1}(x \ge \tau)$ , then the spectral norm of  $\mathbf{F}_{h,\tau}$  is bounded by  $\frac{1}{\tau}$ 

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction 000 Preconditioning (low dim

High dimensional results  $0 \bullet 0$ 

nan

=

# Dealing with the irrepresentable condition is like dealing with mic feedback









- There is a tension between 1) satisfying the irrepresentable condition and 2) limiting the amount of additional noise created by the preconditioner
- The generalized Puffer transformation can handle high degrees of correlation among features
- TL;DR of the main result for the generalized case: we can make the lower bound on the probability P(β̃(λ) =<sub>s</sub> β<sup>\*</sup>) converge to 1 by choosing the tuning parameter so that λ<sup>2</sup>τ<sub>n</sub><sup>2</sup> grows faster than log(p)

| Introduction | Preconditioning (low dim) | High dimensional results | Discussion |
|--------------|---------------------------|--------------------------|------------|
| 000          | 000000                    | 000                      | ●000       |
| Simulations  |                           |                          |            |

- $\bullet\,$  The rows of  ${\bf X}$  are mean zero Gaussian vectors with constant correlation  $\rho\,$ 
  - The Puffer preconditioned Lasso simultaneously achieves fewer false positives, fewer false negatives, and smaller MSE in  $\beta$  across all values of  $\rho$
- $X_{ij} = (G_i/\alpha)Z_{ij}$ , where  $Z_{ij}$  are iid standard normal, and  $G_i$  are independent Gamma r.v. with shape  $\alpha$  and rate 1
  - As  $\alpha \rightarrow$  0, the standard deviation of  $G_i/\alpha$  grows
  - The generalized Puffer transformed Lasso yields a better sign estimator than both the Lasso and the Puffer preconditioned Lasso
- Other types of preconditioner

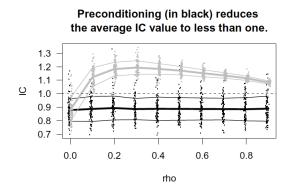
## Wrap up: discussion and take-aways

- Preconditioning can circumvent the irrepresentable condition and achieve sign consistency
- In low dimensions, the Puffer transformation ensures the irrepresentable condition; In high dimensions, the generalized Puffer transformation satisfies the irrepresentable condition with a high probability
- Puffer fish video link

- E - E

- Jia, J. and Rohe, K. "Preconditioning the Lasso for sign consistency" (2015). Electronic Journal of Statistics.
- Khan, Emtiyaz. "Ill-Conditioned Matrices" lecture from *Pattern Classification and Machine Learning* course. Accessed online May 05 2023. https://emtiyaz.github.io/pcml15/illconditioned.pdf
- Lall, Sanjay. "SVD and applications" lecture from Introduction to Linear Dynamical Systems course. Accessed online 05 May 2023. https://ee263.stanford.edu/lectures/svd.pdf

## High dim. simulation shows Puffer can powerfully reduce correlation between features



where IC is the expression previously defined for the irrepresentable condition.  $IC_{\beta^*}(X) < 1 \rightarrow X$  satisfies the irrepresentable condition.

nan