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Epidemiological Motivation

Particulate matter (PM) is a mixture of tiny particles that are
suspended in the air.

Includes nitrates, sulfates, organic matter, metals, and soil
dust.
Contributes to 4.7% of disability-adjusted life years (Murray et
al. 2020).
Both long and short term exposures have a causal relationship
with adverse respiratory and cardiovascular health.
EPA identifies sulfate (SO2−

4 ) as associated with respiratory
and cardiovascular health effects, but health effects vary by
component.
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Methodological Motivation

The epidemiological question at hand requires spatio-temporal
predictions of ambient PM concentrations.

Many viable spatio-temporal modeling approaches already
exist with universal kriging (UK) performing the best for PM
data (Berrocal et al. 2020).
UK fits a new model for each day, ignoring temporal
information.
Spatiotemporal extension of UK was introduced by Lindström
et al. (2014) and implemented in SpatioTemporal R package
but iterative optimization is used to estimate covariance
parameters so it is computationally burdensome.
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Proposal

This paper introduces a penalized regression model for
spatiotemporal data that:

Penalizes overfitting.
Smooths over adjacent time points.
Is computationally efficient.
Yields accurate predictions over both time and space.
Can be used for spatiotemporal applications beyond PM data
as well.
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Penalized Regression Model

Objective Function:

Q(β|X , y) =
n∑

i=1

T∑
t=1

Iit(xit − rTit βt)
2 +

T∑
t=1

g1(λ1, βt)

+ λ2

n∑
i=1

T∑
t=2

(rTit βt − rTi(t−1)βt−1)

(1)

Terms:
1 Quadratic loss
2 Discourages overfitting (Lasso)
3 Smooths over adjacent predictions
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Spatial And Temporal Covariates

Spatiotemporal Predictors rit .
Thin Plate Regression Splines (TPRS) at each site location.

Provide covariate values at any site we want to predict.

Allows for predictive flexibility but with added computational
costs.
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Estimation

β̂ has a closed form solution:

β̂ = (RT
obsRobs + Λ1 + λ2R

TDTDR)−1RT
obsx (2)

Robs is a matrix of stacked block diagonal matrices of observed
covariate values at for each location and time.
R also includes blocks for unobserved times.
Λ1 is the corresponding block diagonal matrix of λ1 values.
D is the distance matrix with potential entries {0, 1, and -1}

And each λ is estimated using cross validation.
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Setup

A 64x64 spatial grid over 60 time points.
Of the 4096 grid points, 500 training and 1000 testing
locations were randomly selected.
error standard deviation σ = 0.5 or 1.5
H representing the random walk over time of H = 0.5 and 0.05
(larger H means greater variation across time).
Compared their model (PR) to the universal kiging (UK), ridge
regression (λ2 = 0), and to the SpatioTemporal (ST) models.
Model comparison was done using root mean square error
(RSME).
Daily missingness was also accounted for where observations
are observed daily, every three days, and every six days.
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Simulation Results
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Simulation Results Cont.

PR has equal or lower RMSE to UK and ridge regression
across all scenarios.
ST has lowest RMSE except when all locations are only
observed every 3rd or 6th day.
When no monitors have daily data, PR fits every third day as
if it were daily and outperforms ST.
If all monitors have some data with each frequency (daily,
every 3rd, every 6th) and similar number of observations made
on each date, PR does not beat ST.
As non-spatial error (σ) increases, all model fits worsen.
Increased daily fluctuations (H = 0.05) decrease predictive
accuracy in all models and affect ridge more that PR.
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Computation Time Results
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Computation Time Results Cont.

PR requires inversion of a sparse pT × pT matrix to estimate
β (Eq. 2).
UK requires inversion of an nT × nT matrix to estimate
covariance parameters (sill and range).
ST uses an optimization algorithm to get ML estimates of its
parameters in space and time. It takes 181.2 min. for
Ntrain = 500 and 5,486.5 min. for Ntrain = 2000 and thus is
infeasible for many locations or with limited resources.
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Setup

PM was measured for concentrations of at least 2.5 and 10, as
well as Sulfate (SO2−

4 ) and Silicon (Si) over the eastern
United States.
The goal is to predict pollutant particle density over time.
PM tended to be measured daily while SO2−

4 and Si tended to
be measured every three or six days.
Spatiotemporal predictors:

3-hour average surface temperatures from the North American
Regional Reanalysis (NARR).
The Community Multiscale Air Quality Modeling Systems’s
(CMAQ) model results for air quality based on atmospheric
dispersion.
The EPA’s daily PM2.5 Predictions.
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Data Filtering and Transformation

Only use federal reference method (FRM) monitors which yield
24-hour data.
Remove concentrations equal to 0 (likely invalid).
If monitors are collocated, only keep the earliest registered
monitor at that site.
PM concentrations are skewed so log transform observed
concentrations and CMAQ values.
Similarly filter sulfate and silicon concentrations and
additionally replace negative values with the lowest observed
positive value.
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Model Fitting

Predict each pollutant using the objective function from Eq. 1
with daily average temperatures and TPRS basis functions as
predictors.
Similarly predict PM2.5 with CMAQ as an additional predictor.
CMAQ is a deterministic predictor of PM2.5 and excluded from
the overfitting penalty Γ1.
Fix λ2 = 0 to select λ1, then select λ2.
Also fit UK and ST with 10-fold cross validation for
comparison.
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RMSE Results (Annual Average)
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Discussion

The proposed penalized regression model for spatiotemporal
prediction penalizes overfitting and smooths over adjacent time
points. TPRS basis functions are used as predictors and we can get
daily average values at any spatial location in the domain.

Can outperform UK and ST depending on the data conditions
(infrequent measurement times).
Scales well computationally to increasing spatial locations.
Predictive accuracy similar to UK but worse than ST for
PM2.5 and PM10 but best (or tied best) performance for the
lesser studied, sulfate and silicon concentrations.
Less sensitive to spatial variability and missingness than UK.
Only predicts dates with at least one observation but can
interpolate to get estimates at missing or unobservable dates.
Flexible definition of temporal adjacency: can set any amount
of time as adjacent (1 day, 1 week, 11 hours, etc.).
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Discussion cont.

Extensions to the model may be possible through clever application
of new penalty terms.

May be possible to to predict multiple pollutants at once.
Extensions to other fields may require slight manipulation.
However, the penalty must remain convex or else the solution
to β̂ will no longer be closed-form.

Generalized optimization techniques can be used to get around
this problem but the computation time will increase.
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Questions?
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Matrix Forms
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Matrix Forms cont.

21 / 26



Background Model Simulation Ambient Air Quality Application Appendix

Matrix Forms cont.
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Matrix Forms cont.
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Matrix Forms cont.
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Summary Results
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Summary Stats of the Results
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