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Introduction

• In principle, the idea of penalized regression can be extended
to any sort of regression model, although of course
complications may arise in the details
• In the final lecture for this topic, we’ll take a brief look at
three additional regression models and their penalized
versions, along with any complications that arise:
◦ Multiclass logistic regression (multinomial regression)
◦ Robust regression
◦ Cox regression
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Penalized multinomial regression

• Suppose, instead of a binary response, we have an outcome
with multiple possible categories (i.e., that follows a
multinomial response, yi ∈ {1, . . . ,K})
• Extending penalized regression methods to multinomial
regression is fairly straightforward:

Q(β|X,y) = − 1
n

K∑
k=1

∑
i|yi=k

log πik +
∑
k

Pλ(βk),

where ηki = x>
i βk and

πik = exp(ηki)∑
l exp(ηli)
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Model fitting

• Can we use the same algorithm we discussed last time for
multinomial models?
• At first glance, it might appear the answer is no, since now we
have a p×K matrix of regression coefficients, and so on
• However, if we adopt the general framework of looping over
the response categories, the problem is equivalent to running
logistic regression updates for each βk:

repeat
for k = 1, 2, . . . ,K

Construct quadratic approximation based on β̃k
Coordinate descent to update β̃k

until convergence
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Identifiability and reference categories

• For the most part, if you have fit a multinomial regression
model before, the penalized version will be familiar
• One noticeable exception, however, is the notion of a
reference category
• In traditional multinomial regression, one category must be
chosen as a reference group (i.e., have βk set to 0) or else the
problem is not identifiable
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Penalization and identifiability

• With penalized regression, however, this restriction is not
necessary
• For example, suppose K = 2; then β1j = 1, β2j = −1
produces the exact same {πik} as β1j = 2, β2j = 0
• As it is impossible to tell the two models apart (and an
infinite range of other models), we cannot estimate {βk}
• With, say, a ridge penalty, this is no longer the case, as∑

k β
2
jk = 2 in the first situation and 4 in the second; the

proper estimate is clear
• A similar phenomenon occurs for the lasso penalty, although
of course there is now the possibility of sparsity, perhaps with
respect to multiple classes

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 6 / 31



Multinomial regression
Robust regression

Cox regression

Idea
Example

But what about the intercepts?

• If you’re paying close attention, you may be wondering: “But
what about the intercepts? They aren’t penalized.”
• Indeed, the elimination of identifiability issue only works for
the penalized coefficients; we need to introduce some sort of
constraint for the intercepts
• In glmnet, the constraint is that

∑
k β0k = 0
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Ramaswamy data

• As an example of such data, consider a study by Ramaswamy
et al. (2001)
• The authors collected 198 tumor samples, spanning 14
common tumor types, which they split into training (n = 144)
and testing (n = 54) sets
• Their goal was to develop a method for classifying the samples
based on microarray data only, with the clinical goal of aiding
in diagnosis, particularly of metastatic or atypical tumors
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glmnet

• Penalized multinomial regression models are implemented in
glmnet (but not ncvreg)
• To use:

fit <- glmnet(x, y, family="multinomial") ## Or:
cvfit <- cv.glmnet(x, y, family="multinomial")

• Here, y is allowed to be a matrix, a factor, or a vector capable
of being coerced into a factor
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Cross-validation (training data only)
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Coefficients

• The number of selected variables reported at the top of the
previous plot is potentially misleading; we have β̂1, β̂2, . . . ,
and the plot only lists the number of nonzero values in β̂1
(which, here, refers to breast cancer)
• For example, at λCV, β̂1,5466 = 0.58, while β̂j,5466 = 0 for all
j 6= 1
• This implies that a 1-unit change in gene 5466 doubles the
odds of breast cancer (e0.58 = 1.8), but has no effect on the
relative odds of the other tumor types
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Coefficient plot (206 nonzero coefficients)
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Ramaswamy results

Br Pr Ln Cl Ly Bl Ml Ut Lk Rn Pn Ov Ms CN

Br 0 0 0 0 0 0 0 0 0 33 0 0 0 0 1
Pr 0 50 0 0 0 0 0 0 0 0 0 25 0 0 4
Ln 0 0 50 0 0 0 0 0 0 0 0 0 0 0 2
Cl 0 0 0 100 0 0 0 0 0 0 33 0 0 0 5
Ly 0 0 0 0 100 0 0 0 0 0 0 0 0 0 6

Bl 25 0 0 0 0 33 0 0 0 0 0 25 0 0 3
Ml 0 0 0 0 0 0 100 0 0 33 0 0 0 0 3
Ut 0 0 0 0 0 0 0 100 0 0 0 0 0 0 2
Lk 0 33 0 0 0 0 0 0 100 0 0 0 0 0 8
Rn 25 0 0 0 0 33 0 0 0 0 33 0 0 0 3

Pn 0 0 0 0 0 0 0 0 0 0 33 0 0 0 1
Ov 50 17 0 0 0 33 0 0 0 0 0 50 0 0 6
Ms 0 0 50 0 0 0 0 0 0 33 0 0 100 25 7
CN 0 0 0 0 0 0 0 0 0 0 0 0 0 75 3

4 6 4 4 6 3 2 2 6 3 3 4 3 4 54

Overall classification accuracy: 65% (random accuracy: 11%)
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Motivation

• Our linear regression models from earlier were based on a least
squares loss function, which is appropriate for normally
distributed data
• Real data, however, sometimes has thicker tails; least squares
estimates tend to be highly influenced by outliers
• One alternative would be to fit a least absolute deviation

(LAD) model:

Q(β|X,y) = 1
n

∑
i

|yi − x>
i β|+ Pλ(β);

the effect is analogous to summarizing a univariate
distribution with a median instead of a mean
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Model fitting: Complications

• The main challenge introduced by this model is the fact that
now the loss function is not differentiable either
• This poses a problem for coordinate descent methods: we
didn’t go into too much detail about their convergence
properties, but it requires separable penalties (OK) and a
differentiable loss function (problem)
• Indeed, one can construct counterexamples in which
coordinate descent fails for L1-penalized LAD regression
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Huber loss approximation

• One solution is to approximate the absolute value function
with a differentiable approximation known as the Huber loss,
after Peter Huber, who first proposed the idea in 1964:

L(ri) =
{
r2
i if |ri| ≤ δ
δ(2 |ri| − δ) if |ri| > δ

• One could either use this idea directly, or continuously relax
δ → 0 to solve the original LAD problem; both of these
options are available in the R package hqreg
• Its usage is very similar to glmnet/ncvreg, with an option

method=c("huber", "quantile", "ls") to specify the
loss function
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Simulation setup

• To see the potential advantages of robust regression, consider
the following simple setup: y = Xβ + ε, n = p = 100,
β1 = β2 = 1, β3 = · · · = β100 = 0, xij ∼ N(0, 1)
• However, instead of ε following a N(0, 1) distribution, in this

simulation it will arise from a mixture distribution:
◦ With 90% probability, εi ∼ N(0, 1)
◦ With 10% probability, the errors are drawn from a noisier

distribution, εi ∼ N(0, σ2), where we will be varying σ
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Simulation results (lasso penalty used for both)

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

σ

M
S

E
Least squares Huber

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 18 / 31



Multinomial regression
Robust regression

Cox regression

Idea
Example

Remarks

• As you would expect, least squares is optimal for σ = 1, and
still better than Huber loss for slightly messy data
• As the outliers get more extreme, however, Huber loss is
clearly superior to least squares
• Both methods get worse as the noise increases, but least
squares is much less robust
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Cox regression

• A popular model for time-to-event data is Cox regression,
after Sir David Cox, who proposed the method in 1972
• Suppose individual j dies at time tj , and that R(tj) denotes

the set of subjects who were at risk (i.e., could have died) at
time tj
• The Cox regression model states that the relative likelihood
that subject j is the one who died, conditional on the fact
that someone died at tj (this is called a partial likelihood) is
given by

exp(x>
j β)∑

k∈R(tj) exp(x>
kβ)
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Challenge: Nondiagonal W

• The Cox partial likelihood is differentiable, so we can form a
quadratic approximation

L(β) ≈ 1
2n(ỹ −Xβ)>W(ỹ −Xβ)

as in the GLM case
• However, the relative nature of the likelihood poses a
challenge: unlike the GLM case, W is no longer a diagonal
matrix
• This is not necessarily a conceptual difficulty, but it presents a
considerable obstacle in terms of practical computation
• The speed of coordinate descent relies on the fact that each
coordinate update takes an insignificant amount of time; if we
have to do lots of calculations like x>

j Wxj , the algorithm will
be much slower
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Do we need the exact value of W?

• Thankfully, it turns out not to be terribly critical to use the
exact Hessian matrix W when solving for the value of β that
minimizes the quadratic approximation
• For example, in logistic regression using wi = 0.25 for all i
also works in terms of converging to the solution β̂, and
surprisingly is often just as fast as using wi = πi(1− πi)
• Setting wi = 0.25 is an example of something called an MM
algorithm; convergence follows from Jensen’s inequality
• Approximating W is also the main idea behind what are
known as quasi-Newton methods
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Approximating W with its diagonal

• A simple idea that turns out to work reasonably well is to
simply approximate W by its diagonal
• Thus, although W is a dense n× n matrix, we can get away
with simply calculating the elements along the diagonal and
using this diagonalized W in the same manner as we did for
penalized GLMs
• I am not aware of any formal proof that this guarantees
convergence (indeed, convergence is never guaranteed for
quadratic approximations without additional steps such as
step-halving), but it seems to work well in practice
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Challenge: Cross-validation

• Another challenge for Cox regression is how to carry out
cross-validation
• In linear regression/logistic regression/multinomial
regression/robust regression, we get actual predicted values
for each observation and can evaluate the loss for each
observation i in isolation
• For Cox regression, we estimate only relative risk, and thus
have no way of assessing whether, say, x>

i β̂ = 0.8 is a good
predictor or not without a frame of reference
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Proposal #1

• One proposal for how to carry out cross-validation for Cox
regression models was proposed by Verweij and van
Houwelingen (1993)
• Their idea was to calculate L(β̂(−i)), the partial likelihood for
the full data based on data leaving out fold i, and
L(−i)(β̂(−i)), the partial likelihood for the data leaving out
fold i based
• The cross-validation error is then

CVE =
∑
i

{L(β̂(−i))− L(−i)(β̂(−i))}

• This is the approach used by glmnet
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Proposal #2

• An alternative approach, used by ncvreg, is to:
(1) Calculate the full set of cross-validated linear predictors,

η = {η(−1), . . . , η(−n)}
(2) Calculate the original Cox partial regression for the full data

set based on the cross-validated linear predictors
• Both approaches are equivalent to regular cross-validation for
ordinary likelihoods
• In simulation studies, the ncvreg approach has been shown to
lead to somewhat more accurate estimates
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Lung cancer data

• To illustrate, let’s look at the data from a study by Shedden
et al. (2008)
• In the study, retrospective data was collected for 442 patients
with adenocarcinoma of the lung including their survival
times, some additional clinical and demographic data, and
expression levels of 22,283 genes taken from the tumor sample
• In the result that follow, I included age, sex, and treatment
(whether the patient received adjuvant chemotherapy) as
unpenalized predictors
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R code

• To fit these models in glmnet:
XX <- cbind(Z, X)
w <- rep(0:1, c(ncol(Z), ncol(X)))
cv.glmnet(XX, S, family="cox", penalty.factor=w)

• And in ncvreg:
cv.ncvsurv(XX, S, penalty="lasso", penalty.factor=w)

• For both models, I used lambda.min=0.35; proceeding
further along the path resulted in clear overfitting
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Results: glmnet
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Results: ncvreg
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Remarks

• Both approaches suggest an improvement in accuracy as the
first dozen or so genes are added to the model, followed by a
relatively flat region; whether this drop is significant or not
may depend on the approach
• As with other penalized regression models, an appealing
feature is that coefficients retain their interpretation
• For example, the gene ZC2HC1A has a hazard ratio of 0.91
(eβ̂j = 0.91), indicating that patients with high ZC2HC1A
expression have a 9% reduction in risk; as one might expect,
the effect is estimated to be larger using MCP-penalized Cox
regression (HR=0.88)
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