Knockoff filter

Patrick Breheny

April 13

Introduction

- Today we will discuss one final approach to inference in high-dimensional regression models called the knockoff filter
- There are two approaches to the knockoff filter:
- In its simplest form, we can generate knockoffs without any assumptions on \mathbf{X}; however this approach only works if \mathbf{X} is full rank (Barber and Candès 2015)
- A later paper (Candès et al. 2018) extended this idea to the $p>n$ case, although in order to do so, we need to make some assumptions about \mathbf{X}
- Both approaches are implemented in the R package knockoff

Step 1: Construct knockoffs

- The basic idea of the knockoff filter is that for each feature \mathbf{x}_{j} in the original feature matrix, we construct a knockoff feature $\tilde{\mathbf{x}}_{j}$
- We'll go into specifics on constructing knockoffs later; for now, we specify the properties that a knockoff $\tilde{\mathbf{x}}_{j}$ must have:

$$
\begin{array}{rlrl}
\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}} & =\mathbf{X}^{\top} \mathbf{X} & \\
\tilde{\mathbf{x}}_{j}^{\top} \mathbf{x}_{k} & =\mathbf{x}_{j}^{\top} \mathbf{x}_{k} \quad \text { for all } k \neq j \\
\frac{1}{n} \tilde{\mathbf{x}}_{j}^{\top} \mathbf{x}_{j} & =1-s_{j} \quad \text { where } 0 \leq s_{j} \leq 1
\end{array}
$$

- In other words, the knockoff matrix $\widetilde{\mathbf{X}}$ differs from the original matrix \mathbf{X}, but has the same correlation structure and the same correlation with the original features

Step 2: Calculate test statistics

- With the knockoffs constructed, the next step is to fit a (lasso) model to the augmented $n \times 2 p$ design matrix $[\mathbf{X} \widetilde{\mathbf{X}}]$
- At this point, we need some sort of test statistic that measures whether the original feature is better than the knockoff
- There are actually a variety of statistics we could use here, but in this lecture we'll focus on the point λ along the lasso path at which a feature enters the model, giving us a $2 p$-dimensional vector $\left\{Z_{1}, \ldots, Z_{p}, \tilde{Z}_{1}, \ldots, \tilde{Z}_{p}\right\}$
- Our test statistic is then

$$
W_{j}=\max \left(Z_{j}, \tilde{Z}_{j}\right) \cdot \operatorname{sign}\left(Z_{j}-\tilde{Z}_{j}\right) ;
$$

i.e., W_{j} will be positive if the original feature is selected before the knockoff, and negative if the knockoff is selected first

Step 3: Estimate false discovery rate

- Now, if we select features such that $W_{j} \geq t$ for some threshold t, we can use the knockoff features to estimate the false discovery rate
- Specifically, our knockoff estimate of the FDR is:

$$
\widehat{\mathrm{FDR}}=\frac{\#\left\{j: W_{j} \leq-t\right\}}{\#\left\{j: W_{j} \geq t\right\}},
$$

with the understanding that $\widehat{\mathrm{FDR}}=1$ if the numerator is larger than the denominator, or if the denominator is zero

- Typically, we would specify the desired FDR q and then choose t to be the smallest value satisfying $\widehat{\operatorname{FDR}}(t) \leq q$

Procedure
Constructing the knockoffs
Theoretical properties

Illustration: Augmented example data $(n=200, p=60)$

Power and $\left\{s_{j}\right\}$

- So, how do we actually construct these knockoffs?
- As we will see, the knockoff filter is valid provided that the knockoffs have the correlation structure outlined earlier; its power, however, depends on $\left\{s_{j}\right\}$
- For the greatest power, we want the knockoffs to be as different from the original features as possible (i.e, we want the $\left\{s_{j}\right\}$ terms to be as large as possible)

Nullspace, n, and p

- Let \mathbf{N} denote an $n \times p$ orthonormal matrix such that $\mathbf{N}^{\top} \mathbf{X}=\mathbf{0}$ (in other words, $\mathbf{N} \boldsymbol{\alpha}$ lies within the column null space of \mathbf{X}; note that this can be constructed using the QR decomposition)
- Note that the nullspace of \mathbf{X} has dimension $n-\operatorname{rank}(\mathbf{X})$
- Thus, for the matrix \mathbf{N} to exist, it is not enough for \mathbf{X} to be full rank; we also need $n \geq p+\operatorname{rank}(\mathbf{X})$, so $n \geq 2 p$ in the full-rank case

Constructing knockoffs under equal correlation

- So, let's say we have a full rank \mathbf{X} with $n \geq 2 p$ and thus can construct an orthonormal \mathbf{N} with $\mathbf{N}^{\top} \mathbf{X}=0$
- Furthermore, suppose we require $s_{j}=s$ for all j and let $\frac{1}{n} \mathbf{C}^{\top} \mathbf{C}=2 s \mathbf{I}-s^{2} \boldsymbol{\Sigma}^{-1}$, where $\boldsymbol{\Sigma}=\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$
- Proposition: The matrix

$$
\widetilde{\mathbf{X}}=\mathbf{X}\left(\mathbf{I}-s \boldsymbol{\Sigma}^{-1}\right)+\mathbf{N C}
$$

satisfies the requirements of a knockoff matrix

The non-full rank case

- What if \mathbf{X} is not full rank?
- It turns out that the maximum value for s is 2 times the minimum eigenvalue of $\boldsymbol{\Sigma}$; thus, $s_{j}=s$ for all j cannot work in the case where \mathbf{X} is not full rank
- In this case, we will have to set some of the $s_{j}=0$ (meaning no power for those features) and try to maximize the rest as best we can
- In the knockoff package, a semidefinite programming approach is used to determine the values that minimize $\sum_{j}\left(1-s_{j}\right)$ subject to the constraints (method='sdp'; the earlier approach is method='equi')

The $p<n<2 p$ case

- Now, what if \mathbf{X} is full rank, but $n<2 p$?
- In this case, there is an interesting little data augmentation trick that can be used, provided that σ^{2} can be estimated accurately
- To get our sample size up to $2 p$, we can generate $2 p-n$ additional rows of \mathbf{X} that are simply all equal to $\mathbf{0}$ and $2 p-n$ additional entries for \mathbf{y} that are drawn from a $\mathrm{N}\left(0, \hat{\sigma}^{2}\right)$ distribution
- We now have a linear model with p features and $2 p$ observations; the new observations carry no information about β, but are useful for generating knockoffs

$p<n<2 p$ data augmentation applied to example data

FDR control

- So does this knockoff procedure actually control the FDR? Not quite
- Instead, Barber and Candès show that it controls a modified version of the FDR:

$$
\mathbb{E}\left(\frac{|\mathcal{N} \cap \hat{\mathcal{S}}|}{|\hat{\mathcal{S}}|+q^{-1}}\right) \leq q
$$

where $\hat{\mathcal{S}}$ is the set of features selected by the knockoff filter

- Alternatively, the knockoff filter controls the FDR if we add 1 to the numerator (i.e., to the number of knockoffs selected)
- The modifications have a nontrivial effect unless many features are selected

Coin flip lemma

- We won't go through the entire proof here, but just present a sketch of the main ideas
- The critical property that knockoffs have is a "coin flipping property": for $j \in \mathcal{N}$, we have $\operatorname{sign}\left(W_{j}\right) \stackrel{\Perp}{\sim} \operatorname{Bern}(1 / 2)$
- This coin flipping property derives from two exchangeability results:
- $[\mathbf{X} \widetilde{\mathbf{X}}]^{\top}[\mathbf{X} \widetilde{\mathbf{X}}]$ is invariant to any exchange of original and knockoff features
- The distribution of $[\mathbf{X} \widetilde{\mathbf{X}}]^{\top} \mathbf{y}$ is invariant to any exchange of null original and knockoff features

Sketch of proof

- With these lemmas in place, the FDR control proof follows from the inequality

$$
\operatorname{FDR} \leq q \cdot \frac{\#\left\{j: \beta_{j}=0 \text { and } W_{j}>t\right\}}{1+\#\left\{j: \beta_{j}=0 \text { and } W_{j}<-t\right\}}
$$

the coin flipping property ensuring that the expected value of this quantity is below q

- The argument can be extended to a random threshold T through use of martingales and the optional stopping theorem similar to our FDR proof at the beginning of the course

Modeling X

- An obvious shortcoming of the previous approach is that it requires $n \geq p$
- Extending the idea to $p>n$ situations requires us to treat \mathbf{X} as random and to model its distribution; Candès et al. refer to these as "model-X knockoffs" or just "MX" knockoffs
- Note that this is an interesting philosophical shift: the classical setup is to assume a very specific distribution for \mathbf{y} but assume as little as possible about \mathbf{X}, whereas MX knockoffs assume that we know everything about the distribution of \mathbf{X} but require no assumptions on the distribution of $Y \mid \mathbf{X}$

Knockoff properties in the random case

- Recall our exchangeability results from earlier; with these in mind, we can define knockoff conditions in the case where \mathbf{X} is treated as a random matrix with IID rows
- A knockoff matrix $\widetilde{\mathbf{X}}$ satisfies
- The distribution of $\left[\begin{array}{ll}X & \tilde{X}] \text { is invariant to any exchange of }\end{array}\right.$ original and knockoff features
- $\tilde{X} \Perp Y \mid X$
- Note that the second condition is guaranteed if $\widetilde{\mathbf{X}}$ is constructed without looking at \mathbf{y}

Gaussian case

- There are special cases in which we actually know something about the distribution of \mathbf{X}; in general, however, we would likely assume it follows a multivariate normal distribution
- The main challenge here is that now we must estimate $\boldsymbol{\Sigma}$, a $p \times p$ covariance matrix, or rather $\boldsymbol{\Sigma}^{-1}$, the precision matrix
- We will (time permitting) discuss this problem a bit later in the course; for now, although this is by no means trivial, let us assume that we can estimate $\boldsymbol{\Sigma}$ well enough to assume that we know $X \sim \mathrm{~N}(\mathbf{0}, \boldsymbol{\Sigma})$

MX knockoffs in the Gaussian case

- In order to satisfy the knockoff property, let us assume the joint distribution $\left[\begin{array}{ll}X & \tilde{X}\end{array}\right] \sim \mathrm{N}(\mathbf{0}, \mathbf{G})$ where

$$
\mathbf{G}=\left[\begin{array}{cc}
\boldsymbol{\Sigma} & \boldsymbol{\Sigma}-\mathbf{S} \\
\boldsymbol{\Sigma}-\mathbf{S} & \boldsymbol{\Sigma}
\end{array}\right]
$$

here \mathbf{S} is a diagonal matrix with entries $\left\{s_{j}\right\}$

- Now, we can draw a random $\widetilde{\mathbf{X}}$ from the conditional distribution $\tilde{X} \mid X$, which is normal with

$$
\begin{aligned}
& \mathbb{E}(\tilde{X} \mid X)=X-\mathbf{S} \boldsymbol{\Sigma}^{-1} X \\
& \mathbb{V}(\tilde{X} \mid X)=2 \mathbf{S}-\mathbf{S} \boldsymbol{\Sigma}^{-1} \mathbf{S}
\end{aligned}
$$

Example data with modeled X

TCGA data

- I tried applying the MX knockoff approach to the TCGA data using the knockoff package, but this crashed, presumably due to the memory limitations of dealing with a $17,322 \times 17,322$ matrix
- I even tried running it on our HPC cluster, but this also crashed
- However, it is worth noting that in their paper, Candès et al. applied the MX knockoff filter to a problem with $p=400,000$ by taking advantage of a special correlation structure in \mathbf{X}

Remarks: Some drawbacks

- The results I obtained for this example differed quite a bit depending on the random $\widetilde{\mathbf{X}}$ I drew; it would seem desirable to aggregate or average these results over the draws, although how exactly to do this is unclear
- Furthermore, scaling the method to high dimensions is not trivial
- Finally, knockoffs appear to be slightly less powerful than some of the other approaches we have discussed

Remarks: Some advantages

- However, the knockoff filter also has some nice advantages
- In particular, none of its theory involves any asymptotics, or anything special about the statistic W, or about the lasso, which means:
- The theory holds exactly in finite dimensions
- We can use other statistics, such as the lasso coefficient difference: $W_{j}=\left|\widehat{\beta}_{j}(\lambda)\right|-\left|\widehat{\beta}_{j+p}(\lambda)\right|$
- Perhaps most appealing, we can apply this reasoning to all kinds of other methods - other penalties of course, but also much more ambitious problems: forward selection, random forests, even deep learning

