Theoretical results: Non-asymptotic

Patrick Breheny

March 28

Patrick Breheny

University of Iowa High dimensional data analysis (BIOS 7240)

Introduction

- Last time we derived results from a classical perspective in which β^* was fixed as $n\to\infty$
- Today, we will consider things from a non-asymptotic perspective, obtaining bounds on estimation and prediction error while allowing p>n
- Although results along these lines can be shown for other penalized regression estimators as well, today's lecture will focus entirely on the lasso

A preliminary lemma

- We'll begin by discussing prediction, as we can prove results here without requiring any additional conditions
- First, let us prove the following lemma, from which several of our later results will derive
- Lemma: If $\lambda \geq \frac{2}{n} \| \mathbf{X}^{\top} \boldsymbol{\varepsilon} \|_{\infty}$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \leq \lambda \|\boldsymbol{\delta}\|_1 + 2\lambda \|\boldsymbol{\beta}^*\|_1 - 2\lambda \|\boldsymbol{\delta} + \boldsymbol{\beta}^*\|_1,$$

where $oldsymbol{\delta} = \widehat{oldsymbol{eta}} - oldsymbol{eta}^*$

Prediction bound

- Based on this lemma, we have the following
- Theorem: If $\lambda \geq \frac{2}{n} \| \mathbf{X}^{\top} \boldsymbol{\varepsilon} \|_{\infty}$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 4\lambda \|\boldsymbol{\beta}^*\|_1$$

• Corollary: If $\lambda = 2\sigma \sqrt{c \log(p)/n}$ and $\mathbf{y} = \mathbf{X} \boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\mu}{\sim} N(0, \sigma^2)$, then the lasso prediction error satisfies

$$\frac{1}{n} \| \mathbf{X} \widehat{\boldsymbol{\beta}} - \mathbf{X} \boldsymbol{\beta}^* \|_2^2 \le 8\sigma \| \boldsymbol{\beta}^* \|_1 \sqrt{\frac{c \log p}{n}}$$

with probability at least $1 - 2\exp\{-\frac{1}{2}(c-2)\log p\}$

- The prediction error increases with noise and dimension, and decreases with sample size these dependencies are intuitive
- The dependence on ||β^{*}|| is less obvious; it is worth noting, however, that up until this point, we have assumed nothing about β^{*} (or about X)
- This prediction result differs from our previous results: previously, we had shown that prediction error was $O(n^{-1})$, whereas this result is $O(n^{-1/2})$

Convexity conditions Estimation bound Prediction bound revisited

Eigenvalue conditions

- In the previous lecture, we introduced an eigenvalue condition: namely, that $\mathbf{X}^{\top}\mathbf{X}/n \rightarrow \boldsymbol{\Sigma}$, with the minimum eigenvalue of $\boldsymbol{\Sigma}$ bounded above 0
- Why is this important?
- We're finding the value $\hat{\beta}$ that minimizes $Q(\beta)$; but even if we can guarantee that $Q(\hat{\beta}) \approx Q(\beta^*)$, if the function is flat, we have no guarantee that $\hat{\beta}$ is close to β^*
- If p > n, however, it is clear that this condition can never be met

Prediction Estimation Selection Convexity conditions Estimation bound Prediction bound rev

Restricting our eigenvalue conditions

• In other words, our previous condition was:

$$\frac{\frac{1}{n}\boldsymbol{\delta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_2^2} > \tau$$

for all $\boldsymbol{\delta} \neq \mathbf{0}$ and some $\tau > 0$

- However, what if this condition didn't have to be met for all $\delta \in \mathbb{R}^p$, but only for some $\delta \in \mathbb{R}^p$?
- For example, what if we only had to satisfy the condition for $\delta \in \mathbb{R}^{\mathcal{S}}$?

Prediction Converse Estimation Estimation Predi

Convexity conditions Estimation bound Prediction bound revisited

A cone condition

- This is a step in the right direction, but not nearly strong enough: for example, suppose a variable in ${\cal N}$ was perfectly correlated with a variable in ${\cal S}$
- We will definitely need to involve N in our condition as well, but how to do so without running into dimensionality problems?
- The key here is to require the eigenvalue condition for only those δ vectors that fall mostly, or at least partially, in the direction of β^*
- Theorem: If $\lambda \geq \frac{2}{n} \| \mathbf{X}^{\mathsf{T}} \boldsymbol{\varepsilon} \|_{\infty}$, then

 $\|\boldsymbol{\delta}_{\mathcal{N}}\|_{1} \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_{1}$

Prediction Convexity conditions Estimation Estimation bound Selection Prediction bound revis

Examples

• For example, suppose $\mathbf{X}^{\top}\mathbf{X}/n$ looks like this:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- We are in trouble if ${\mathcal S}$ contains either feature 2 or feature 3
- However, if $\mathcal{S}=\{1\}$ then there are no flat directions that lie within the lasso cones
- Second example: Suppose $S = \{1\}$ and $\mathbf{x}_1 = \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4$; then $L(\boldsymbol{\beta})$ would be perfectly flat in the direction $\boldsymbol{\delta} = (1, -1, -1, -1)$, with $\|\boldsymbol{\delta}_{\mathcal{N}}\|_1 \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_1$ satisfied – this kind of \mathbf{X} must be ruled out also

Convexity conditions Estimation bound Prediction bound revisited

Illustration

Prediction Estimation Selection Convexity conditions Estimation bound Prediction bound revisite

Restricted eigenvalue condition

 Let us now formally state the *restricted eigenvalue condition*, which I will denote RE(τ): There exists a constant τ > 0 such that

$$\frac{\frac{1}{n}\boldsymbol{\delta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_{2}^{2}} \geq \tau$$

for all nonzero $oldsymbol{\delta} : \|oldsymbol{\delta}_{\mathcal{N}}\|_1 \leq 3\|oldsymbol{\delta}_{\mathcal{S}}\|_1$

 Note: This condition is specific to linear regression; the general condition is known as *restricted strong convexity* and would consist of replacing X^TX/n with ∇²L(β)

Convexity conditions Estimation bound Prediction bound revisited

Other conditions

This is certainly not the only condition that people have used to prove things in the high-dimensional setting; other similar conditions include

- Irrepresentable condition
- Restricted isometry property (RIP)
- Compatibility condition
- Coherence condition
- Sparse Riesz condition

All of these conditions require that $\mathbf{X}_{\mathcal{S}}$ is full rank as well as placing some sort of restriction on how strongly features in \mathcal{S} can be correlated with features in \mathcal{N}

 Prediction
 Convexity conditions

 Estimation
 Estimation bound

 Selection
 Prediction bound revisite

Estimation consistency

- With this condition in place, we're ready to prove the following theorem
- Theorem: Suppose X satisfies $\mathsf{RE}(\tau)$ and $\lambda \geq \frac{2}{n} \|\mathbf{X}^{\top} \boldsymbol{\varepsilon}\|_{\infty}$; then

$$\|\widehat{oldsymbol{eta}} - oldsymbol{eta}^*\|_2 \leq rac{3}{ au}\lambda\sqrt{|\mathcal{S}|}$$

• Corollary: Suppose X satisfies $\mathsf{RE}(\tau)$, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\mu}{\sim} \mathrm{N}(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 \leq \frac{6\sigma}{\tau} \sqrt{\frac{c \,|\mathcal{S}| \log p}{n}}$$

with probability $1 - 2\exp\{-\frac{1}{2}(c-2)\log p\}$

Convexity conditions Estimation bound Prediction bound revisited

- This rate makes a lot of sense:
 - The error of the oracle estimator is on the order $\sigma\sqrt{|\mathcal{S}|/n}$: no method can estimate \mathcal{S} parameters based on n observations at a better rate than this
 - $\circ~$ The $\log p$ term is the price we pay to search over p features in order to discover the sparse set ${\cal S}$
- Note also the dependence on the eigenvalue parameter τ; in particular, if the minimum eigenvalue is close to 0, the estimate rate will suffer significantly

Estimation	
	Prediction bound revisited

Another look at prediction error

- Now that we've made some assumptions about X and β^{*}, does this affect our prediction accuracy?
- Theorem: Suppose X satisfies $RE(\tau)$ and $\lambda \geq \frac{2}{n} || \mathbf{X}^{\top} \boldsymbol{\varepsilon} ||_{\infty}$; then

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le \frac{9}{\tau} \lambda^2 |\mathcal{S}|$$

• Corollary: Suppose X satisfies $\mathsf{RE}(\tau)$, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\mu}{\sim} \mathrm{N}(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 36c \frac{\sigma^2}{\tau} \frac{|\mathcal{S}|\log p|}{n}$$

with probability $1-2\exp\{-\frac{1}{2}(c-2)\log p\}$

 Prediction
 Convexity conditions

 Estimation
 Estimation bound

 Selection
 Prediction bound revisited

- We have now derived two results concerning the prediction error of the lasso:
 - $\circ~$ No assumptions on ${\bf X}$ or ${\pmb \beta}^*:~{\rm MSPE}=O(n^{-1/2}),$ the "slow rate"
 - β^* sparse, X satisfies RE(τ): MSPE = $O(n^{-1})$, the "fast rate"
- Further theoretical work has shown that these bounds are in fact tight: no method can achieve the fast rate without additional assumptions

Irrepresentable condition

- Finally, we'll take a look at the selection consistency of the lasso in high dimensions, although we're not going to have time to prove our result in class
- We begin by noting that our restricted eigenvalue condition is not enough to establish selection consistency; we need something stronger
- The feature matrix X satisfies the *irrepresentable condition*, which I will denote IR(τ), if there exists τ > 0 such that

$$\max_{j \in \mathcal{N}} \| (\mathbf{X}_{\mathcal{S}}^{\mathsf{T}} \mathbf{X}_{\mathcal{S}})^{-1} \mathbf{X}_{\mathcal{S}}^{\mathsf{T}} \mathbf{x}_{j} \|_{1} \le 1 - \tau$$

- Note that this places an upper bound on the size of
 (\$\mathbf{X}_S^T \mathbf{X}_S\$)^{-1}\$\mathbf{X}_S^T \mathbf{x}_j\$, the coefficient for regressing a null feature
 on the signal features
- In words, this is saying no noise feature can be highly "represented" by the true signal features; if this were the case, we might select the noise feature instead of the true signal
- For example, if $\mathbf{X}_{\mathcal{S}}$ and $\mathbf{X}_{\mathcal{N}}$ were orthogonal, then $\tau=1$
- Note that
 - This is actually a fairly strong condition
 - IR(τ) requires $\Sigma_S = \frac{1}{n} \mathbf{X}_S^{\top} \mathbf{X}_S$ to be invertible; let ξ_* denote its minimum eigenvalue

Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that **X** satisfies $IR(\tau)$ and $\mathbf{y} = \mathbf{X}\beta^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\mu}{\sim} N(0, \sigma^2)$; let

$$\lambda = \frac{8\sigma}{\tau} \sqrt{\frac{\log p}{n}}$$
$$B = \lambda \left(\frac{4\sigma}{\sqrt{\xi_*}} + \| \mathbf{\Sigma}_{\mathcal{S}}^{-1} \|_{\infty} \right)$$

Then with probability at least $1 - c_1 \exp\{-c_2 n \lambda^2\}$, the lasso solution $\hat{\beta}$ has the following properties:

Selection consistency theorem (Wainwright, 2009) (cont'd)

- Uniqueness: $\hat{oldsymbol{eta}}$ is unique
- Estimation error bound: $\|\widehat{\boldsymbol{\beta}} \boldsymbol{\beta}^*\|_{\infty} \leq B$
- No false inclusions: $\hat{S} \subseteq S$
- No false exclusions: \hat{S} includes all indices j such that $|\beta_j^*| > B$ and is therefore selection consistent provided that all elements of β_S^* are at least that large