Nonconvex penalties: Signal-to-noise ratio and algorithms

Patrick Breheny

March 2

Introduction

- In today's lecture, we will discuss the performance of nonconvex penalties with respect to the signal-to-noise ratio of the data-generating process, the most critical factor determining their success relative to the lasso
- We will then turn our attention to the details of model fitting, discussing algorithms for nonconvex penalties as well as the impact of nonconvexity on model-fitting

Signal to noise ratio

For linear regression,

$$Var(Y) = Var(E(Y|X)) + E(Var(Y|X))$$
$$= \beta^{\top} Var(X)\beta + \sigma^{2}$$

- The first term in the sum is known as the *signal* and the second term the *noise*
- Thus, we may define the *signal-to-noise ratio*

$$\mathrm{SNR} = \boldsymbol{\beta}^{\scriptscriptstyle \top} \mathrm{Var}(X) \boldsymbol{\beta} / \sigma^2$$

SNR and R^2

- Recall that we have seen this decomposition before, in calculating R^2 , which is also a function of the signal and noise
- In particular, note that

$$R^2 = \frac{\mathrm{SNR}}{1 + \mathrm{SNR}}$$

• As a general piece of advice, I strongly recommend considering the signal-to-noise ratio when designing simulations, and avoiding settings where SNR is, say, 50 $(R^2 = .98)$; is this realistic?

Simulation: Setup

- To see the impact of SNR, let's set n = 50, p = 100, and let all features \mathbf{x}_j follow independent, standard Gaussian distributions
- In the generating model, we set β₁ = β₂ = β₃ = ··· = β₆ ≠ 0 and β₇ = β₈ = ··· = β₁₀₀ = 0, varying the nonzero values of β₁ through β₆ to produce a range of signal to noise ratios
- For each data set, an independent data set of equal size was generated for the purposes of selecting the regularization parameter

Simulation: Results

Remarks

- The motivation of MCP/SCAD/etc. is to eliminate bias for large coefficients; it should not come as little surprise, then, that the advantage of these methods only becomes apparent when some nonzero coefficients are large
- It is also worth noting that $\gamma \approx 3$ is generally a reasonable choice for MCP its performance was never far from the best
- Also note that the SCAD is somewhat less sensitive to the choice of γ , in the sense that many values of γ produce rather lasso-like estimates

Coordinate descent Local approximations Convexity

Algorithm

Letting $\tilde{z} = n^{-1} \mathbf{x}_j^\top \tilde{\mathbf{r}}_j$, F is the firm-thresholding operator, and T_{SCAD} is the SCAD-thresholding operator, the CD algorithm for MCP/SCAD is

repeat

$$\begin{split} & \text{for } j = 1, 2, \dots, p \\ & \tilde{z}_j = n^{-1} \sum_{i=1}^n x_{ij} r_i + \widetilde{\beta}_j^{(s)} \\ & \widetilde{\beta}_j^{(s+1)} \leftarrow \begin{cases} F(\tilde{z}_j | \lambda, \gamma) & \text{for MCP, or} \\ T_{\text{SCAD}}(\tilde{z}_j | \lambda, \gamma) & \text{for SCAD} \end{cases} \\ & r_i \leftarrow r_i - (\widetilde{\beta}_j^{(s+1)} - \widetilde{\beta}_j^{(s)}) x_{ij} \text{ for all } i \end{split}$$

until convergence

The algorithm is identical to our earlier algorithm for the lasso except for the step in which $\tilde{\beta}_j$ is updated

Coordinate descent Local approximations Convexity

Convergence

- Although the MCP and SCAD penalties are not convex functions, $Q(\beta_j|\beta_{-j})$ is still convex
- As a result, the coordinate-wise updates are unique and always occur at the global minimum with respect to that coordinate
- Proposition: Let {β^(s)} denote the sequence of coefficients produced at each iteration of the coordinate descent algorithms for SCAD and MCP. For all s = 0, 1, 2, ...,

$$Q(\boldsymbol{\beta}^{(s+1)}) \le Q(\boldsymbol{\beta}^{(s)}).$$

Furthermore, the sequence is guaranteed to converge to a local minimum of $Q(\beta)$.

Coordinate descent Local approximations Convexity

Local linear approximation

- For MCP and SCAD, one can obtain closed-form coordinate-wise minima and use those solutions as updates
- An alternative approach, which is particularly useful in penalties that do not yield tidy closed-form solutions, is to construct a local approximation of the penalty about a point β̃:

$$P(|\beta|) \approx P(|\tilde{\beta}|) + \dot{P}(|\tilde{\beta}|)(|\beta| - |\tilde{\beta}|)$$

• Note that with this approximation, the penalty takes on the form of the lasso penalty (with $\dot{P}(|\tilde{\beta}|)$ playing the role of the regularization parameter) plus a constant

Coordinate descent Local approximations Convexity

LLA algorithm

• The approximation is applied in an iterative fashion: at the sth iteration, letting $\tilde{\lambda}_j = \dot{P}(|\beta_j^{(s-1)}|)$, the update is given by solving for the value minimizing

$$\frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \sum_{j=1}^p \tilde{\lambda}_j |\beta_j|$$

• Note that this equation is essentially identical to the one for the adaptive lasso; however, the adaptive lasso weights are assigned in a more or less ad hoc fashion based on an initial estimator, while the LLA modifications to λ are explicitly determined by the penalty function P

Coordinate descent Local approximations Convexity

Remarks

- Like coordinate descent, the local linear approximation (LLA) algorithm is guaranteed to drive the objective function downhill with every iteration and to converge to a local minimum of $Q(\boldsymbol{\beta})$
- For MCP and SCAD, CD is more efficient, as it avoids the extra approximation introduced by LLA
- However, LLA is still quite efficient, and a valuable alternative when dealing with penalties without a simple solution in the one-dimensional case

Coordinate descent Local approximations Convexity

Convexity challenges

- While the objective functions for SCAD and MCP are convex in each coordinate dimension, they are not convex over \mathbb{R}^p
- Thus, multiple minima may exist, each satisfying the KKT conditions
- Neither the CD or LLA algorithms are guaranteed to converge to the global minimum in such cases
- As we have discussed earlier, the existence of multiple minima poses considerable problems for MLE / penalized MLE methods, both numerically (convergence to an inferior solution) and statistically (increased variance as the solution jumps from one minima to another)

Coordinate descent Local approximations Convexity

Global convexity

- We begin by noting that it is possible for the objective function Q to be convex with respect to β even though the penalty component is nonconvex
- Letting c_{\min} denote the minimum eigenvalue of $\mathbf{X}^{\top}\mathbf{X}/n$, the MCP objective function is strictly convex if $\gamma > 1/c_{\min}$, while the SCAD objective function is strictly convex if $\gamma > 1 + 1/c_{\min}$
- In this case, the coordinate descent and LLA algorithms will converge to the unique global minimum of ${\cal Q}$

Coordinate descent Local approximations Convexity

Is global convexity desirable?

- However, obtaining strict convexity is not always possible or desirable; for example, in high-dimensional settings where $p>n,\,c_{\rm min}=0$ and the MCP/SCAD objective functions cannot be globally convex
- Nevertheless, as we saw in the earlier simulations (where p > n), it is not true in general that convex penalties outperform nonconvex ones in such scenarios
- For low signal-to-noise ratios there was indeed some benefit to increasing γ in an effort to make the objective function more convex; however, for larger SNR values, this strategy diminished estimation accuracy

Coordinate descent Local approximations Convexity

Local convexity

- One reason this happens is that the solutions are sparse
- Although Q(β) may not be convex over the entire p-dimensional parameter space (i.e., globally convex), it is still convex on many lower-dimensional spaces
- If these lower-dimensional spaces contain the solution of interest, then the existence of other local minima in much higher dimensions may not be relevant
- This concept is known as *local convexity*

Coordinate descent Local approximations Convexity

Local convexity: Details

- Recall the conditions for global convexity: γ must be greater than $1/c_{\min}$ for MCP and $1 + 1/c_{\min}$ for SCAD, where c_{\min} denoted the minimum eigenvalue of $\mathbf{X}^{\top}\mathbf{X}/n$
- A straightforward modification is to include only the covariates with nonzero coefficients (the covariates which are "active" in the model) in the calculation of c_{\min}
- Note that neither γ nor X change with λ ; what does vary with λ is the set of active covariates; generally speaking, this will increase as λ decreases
- Thus, local convexity of the objective function will not be an issue for large λ , but may cease to hold as λ is lowered past some critical value λ^*

Coordinate descent Local approximations Convexity

Convexity diagnostic: Example (MCP)

ignal to noise ratio

Coordinate descent Local approximations Convexity

Convexity diagnostic: Example (cont'd)

Coordinate descent Local approximations Convexity

Remarks

- As the second figure indicates, when $\lambda = 0.42$, β_1 clearly minimizes the objective function and when $\lambda = 0.11$, β_2 clearly minimizes the objective function
- For $\lambda\approx 0.25$, however, the objective function is very broad and flat, indicating substantial uncertainty about which solution is preferable
- Calculation of the locally convex region (the unshaded region in the earlier figure) can be a useful diagnostic in practice to indicate which regions of the solution path may suffer from multiple local minima and discontinuous paths