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Introduction

• Today we will discuss the selection of λ as well as the related
but somewhat different task of estimating (and obtaining
confidence intervals for) the prediction error of a model
• For the lasso, both of these involve tend to revolve around
cross-validation, although we will discuss a few different
approaches
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Degrees of freedom

• In our discussion of ridge regression, we used information
criteria to select λ
• All of the criteria we discussed required an estimate of the
degrees of freedom of the model
• For linear fitting methods, we saw that df = tr(S)
• The lasso, however, is not a linear fitting method; there is no
exact, closed form solution to Cov(y, ŷ)
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Degrees of freedom for the lasso

• A natural proposal would be to use df(λ) = ‖β̂(λ)‖0, the
number of nonzero coefficients
• From one perspective, this might seem to underestimate the
true degrees of freedom, as the variables were not prespecified
• For example, in our forward selection example from our first
class, we selected 5 features but the true df was ≈ 19
• On the other hand, shrinkage reduces the degrees of freedom
in an estimator, as we have seen in ridge regression; from this
perspective, ‖β̂(λ)‖0 might seem to overestimate the true
degrees of freedom
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Degrees of freedom for the lasso (cont’d)

• Surprisingly, it turns out that these two factors exactly cancel
and df(λ) = ‖β̂(λ)‖0 can be shown to be an unbiased
estimate of the lasso degrees of freedom
• Given this estimate, we can then use information criteria such
as BIC for the purposes of selecting λ
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ncvreg

• To illustrate, we will use the ncvreg package to fit the lasso
path
• The primary purpose of ncvreg is to provide penalties other
than the lasso, which we will discuss in our next topic
• However, it provides a logLik method, unlike glmnet, so it

can be used with R’s AIC and BIC functions:
fit <- ncvreg(X, y, penalty="lasso")
AIC(fit)
BIC(fit)
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AIC, BIC for pollution data
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Remarks

• As we would expect, BIC applies a stronger penalty for
overfitting and chooses a smaller, more parsimonious model
than does AIC
• The main advantage of AIC and BIC is that they are
computationally convenient: they can be calculated using the
fit of the lasso model at very little computational cost
• The primary disadvantage is that both AIC and BIC rely on a
number of asymptotic approximations that can be quite
inaccurate for high-dimensional data
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Cross-validation: Introduction

• As we have discussed, a reasonable approach to selecting λ in
an objective manner is to choose the value of λ that yields the
greatest predictive power
• An alternative to the approximations of AIC and BIC is to
assess predictive power more directly and empirically through
a technique called cross-validation
• Cross-validation is much more reliable, although it comes at
an added computation cost
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Sample splitting

• Using the observed agreement between fitted values and the
data is too optimistic; we require independent data to test
predictive accuracy
• One solution, known as sample splitting, is to split the data
set into two fractions, a training set and test set, using one
portion to estimate β̂ (i.e., “train” the model) and the other
to evaluate how well Xβ̂ predicts the observations in the
second portion (i.e., “test” the model)
• The problem with this solution is that we rarely have so much
data that we can freely part with half of it solely for the
purpose of choosing λ
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Cross-validation

To finesse this problem, cross-validation splits the data into K
folds, fits the data on K − 1 of the folds, and evaluates prediction
error on the fold that was left out

1 2 3 4 5

Common choices for K are 5, 10, or n (also known as
leave-one-out cross-validation)
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Cross-validation: Details

(1) Specify a grid of regularization parameter values
Λ = {λ1, . . . , λK}

(2) Divide the data into V roughly equal parts D1, . . . , DV

(3) For each v = 1, . . . , V , compute the lasso solution path using
the observations in {Du, u 6= v}

(4) For each λ ∈ Λ, compute the mean squared prediction error

MSPEv(λ) = 1
nv

∑
i∈Dv

{yi − x>i β̂−v(λ)}2,

where nv is the number of observations in Dv, as well as

CV(λ) = 1
V

V∑
v=1

MSPEv(λ).
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Cross-validation: Details (cont’d)

• Then λ̂ is taken to be the value that minimizes CV(λ) and
β̂ ≡ β̂(λ̂) the estimator of the regression coefficients
• Note that

◦ MSPEv(λ) is the mean squared prediction error for the model
based on the training data {Du, u 6= v} in predicting the
response variables in Dv

◦ CV(λ) is an estimate of . . . actually, that turns out to be a
good question; what exactly is CV estimating?
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What is CV estimating?

• An attractive target would be

Eỹ

{ 1
n

∑
[ỹi − f̂(xi)]2

}
,

where ỹ is an independent copy of y based on the same X
(drawn from the same conditional distribution yi|xi)
• This is, in words, the expected prediction error over new
random outcomes but conditional on the specific data set
X,y that we collected
• CV does not estimate this quantity well (as it turns out, this
quantity is rather challenging to estimate)
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What is CV estimating? (cont’d)

• Another possibility is the “Same-X” prediction error:

EX,y,ỹ

{ 1
n

∑
[ỹi − f̂(xi)]2

}
;

this is what Cp and AIC estimate
• Several papers have shown, however, that CV doesn’t
estimate this well either
• CV lies much closer to the “Random-X” prediction error:

EX,y,x∗,y∗
{

[y∗ − f̂(x∗)]2
}
,

where (x∗,y∗) are drawn from the same distribution that X
and y came from
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Variability of CV estimates

• With this in mind as the estimand (estimation target) of CV,
we can think about constructing confidence intervals
• To begin, note that regardless of the number of
cross-validation folds, each observation in the data appears
exactly once in a test set
• Letting µ̂i(λ) = x>i β̂u(i)(λ), the mean of {yi − µ̂i(λ)}ni=1 is

equal to CV(λ)
• Its variability, however, is useful for estimating the accuracy
with which E(MSPE(λ)) is estimated
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CV standard errors

• Letting SDCV(λ) denote the sample standard deviation of the
{yi − µ̂i(λ)}2 values, the standard error of CV(λ) is

SECV(λ) = SDCV(λ)√
n

,

which, in turn, can be used to construct confidence intervals
• The cross-validation procedure described in this section, along
with the estimates of CV(λ) and its standard error, are
implemented in glmnet and can be carried out using
cvfit <- cv.glmnet(X, y)
plot(cvfit)

By default, cv.glmnet uses V = 10 folds, but this can be
changed through the nfolds option.
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CV plot for lasso: Pollution data
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Remarks

• The value λ = 1.84 minimizes the cross-validation error, at
which point 9 variables are selected
• However, as the confidence intervals show, there is substantial
uncertainty about this minimum value
• A fairly wide range of λ values (λ ∈ [0.12, 9.83]) yield CV(λ)

estimates falling within ±1SECV of the minimum
• This is almost always the case in model selection: a large
number of models could reasonably be considered the “best”
model, subject to random variability
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Repeated cross-validation

• Note that CV(λ), and hence β̂, will change somewhat
depending on the random folds
• To avoid this, some people carry out repeated cross-validation,

and select λ according to the average CV error
• Another option is to carry out n-fold cross-validation, in which

there is only one way to select the fold assignments
• It is important to realize, however, that neither of these
approaches does anything to eliminate actual uncertainty with
respect to the selection of λ
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Nested cross-validation and conformal prediction

• Some recent work has shown that these simple SE
calculations have a tendency to be too small, and the
confidence intervals for the true prediction error have lower
than advertised coverage
• Various solutions to this problem have been proposed,
including a nested cross-validation scheme as well as a very
different approach altogether called conformal prediction,
although both these methods are much more computationally
intensive than ordinary CV
• Furthermore, regardless of what exactly CV is estimating, or
how accurately it estimates it, picking the λ value that
minimizes CV is usually reasonable (which is usually the
primary concern in high-dimensional regression
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Coefficient of determination

• A related goal is estimating the proportion of variance in the
outcome that can be explained by the model
• This quantity, familiar from classical regression, is known as
the coefficient of determination and denoted R2

• The coefficient of determination is given by

R2 = 1− Var(Y |X)
Var(Y )

◦ Estimation of Var(Y ) is straightforward
◦ Estimation of Var(Y |X) is (more or less) what CV estimates
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R2: Calculation in R

• Once cross-validation is done, calculating R2 is straightforward
• With glmnet:

cvfit <- cv.glmnet(X, y)
rsq <- 1-cvfit$cvm/var(y)

• Also, the coefficient of determination is available as a plot
type in ncvreg:
cvfit <- cv.ncvreg(X, y, penalty="lasso")
plot(cvfit, type="rsq")
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R2 plot: Pollution data
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It is worth noting that only a small amount of the explained
variability comes from the pollution variables: maxR2 = 0.58 with
the pollution variables; maxR2 = 0.56 without them
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summary.cv.ncvreg

ncvreg also provides a summary() method for its cross-validation
object that reports all of this information:

> summary(cvfit)
lasso-penalized linear regression with n=60, p=15
At minimum cross-validation error (lambda=1.9762):
-------------------------------------------------

Nonzero coefficients: 9
Cross-validation error (deviance): 1591.57
R-squared: 0.58
Signal-to-noise ratio: 1.39
Scale estimate (sigma): 39.895
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