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Introduction

• In the last topic, we introduced penalized regression and
discussed ridge regression, in which the penalty took the form
of a sum of squares of the regression coefficients
• In this topic, we will instead penalize the absolute values of
the regression coefficients, a seemingly simple change with
widespread consequences
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• Specifically, consider the objective function

Q(β|X,y) = 1
2n‖y−Xβ‖22 + λ‖β‖1,

where ‖β‖1 =
∑

j |βj | denotes the `1 norm of the regression
coefficients
• As before, estimates of β are obtained by minimizing the

above function for a given value of λ, yielding β̂(λ)
• This approach was originally proposed in the regression
context by Robert Tibshirani in 1996, who called it the least
absolute shrinkage and selection operator, or lasso
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Shrinkage, selection, and sparsity

• Its name captures the essence of what the lasso penalty
accomplishes
◦ Shrinkage: Like ridge regression, the lasso penalizes large

regression coefficients and shrinks estimates towards zero
◦ Selection: Unlike ridge regression, the lasso produces sparse

solutions: some coefficient estimates are exactly zero,
effectively removing those predictors from the model

• Sparsity has two very attractive properties
◦ Speed: Algorithms which take advantage of sparsity can scale

up very efficiently, offering considerable computational
advantages

◦ Interpretability: In models with hundreds or thousands of
predictors, sparsity offers a helpful simplification of the model
by allowing us to focus only on the predictors with nonzero
coefficient estimates
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Ridge and lasso penalties
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Semi-differentiable functions

• One obvious challenge that comes with the lasso is that, by
introducing absolute values, we are no longer dealing with
differentiable functions
• For this reason, we’re going to take a moment and extend
some basic calculus results to the case of non-differentiable
(more specifically, semi-differentiable) functions
• A function f : R→ R is said to be semi-differentiable at a

point x if both d−f(x) and d+f(x) exist as real numbers,
where d−f(x) and d+f(x) are the left- and right-derivatives
of f at x
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Subderivatives and subdifferentials

• Given a semi-differentiable function f : R→ R, we say that d
is a subderivative of f at x if d ∈ [d−f(x), d+f(x)]; the set
[d−f(x), d+f(x)] is called the subdifferential of f at x, and is
denoted ∂f(x)
• The subdifferential is a set-valued function: it may consist of
a single value (if f is differentiable), an interval of values, or it
may be empty (if d−f(x) > d+f(x))
◦ Subderivatives are useful for minimization problems; if we were

maximizing a function, we would care about the mirror idea of
superdifferentials

◦ This is a broader definition of subdifferential than the one used
in the convex optimization literature, but we need it in order to
consider non-convex penalties later in the course
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Example: |x|

For the most part in this course, you don’t really need to know
much about subdifferentials and subgradients (the
multidimensional version of subdifferentials), but you should be
familiar with the subdifferential for f(x) = |x|:

∂ |x| =


−1 if x < 0
[−1, 1] if x = 0
1 if x > 0
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Optimization

• The essential results of optimization can be extended to
semi-differentiable functions
• Theorem: If f is a semi-differentiable function and x0 is a
local minimum of f , then 0 ∈ ∂f(x0)
• As with regular calculus, the converse is not true in general
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Computation rules

• As with regular differentiation, the following basic rules apply
• Theorem: Suppose f is semi-differentiable, a, b are
constants, and g is differentiable. Then
◦ ∂{af(x) + b} = a∂f(x)
◦ ∂{f(x) + g(x)} = ∂f(x) + g′(x)

• The notions extend to higher-order derivatives as well; a
function f : R→ R is said to be second-order
semi-differentiable at a point x if both d2

−f(x) and d2
+f(x)

exist as real numbers
• The second-order subdifferential is denoted
∂2f(x) = [d2

−f(x), d2
+f(x)]
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Convexity

• As in the differentiable case, a convex function can be
characterized in terms of its subdifferential
• Theorem: Suppose f is semi-differentiable on (a, b). Then f

is convex on (a, b) if and only if ∂f is increasing on (a, b).
• Theorem: Suppose f is second-order semi-differentiable on

(a, b). Then f is convex on (a, b) if and only if
∂2f(x) ≥ 0 ∀x ∈ (a, b).
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Multidimensional results

• The previous results can be extended (although we’ll gloss
over the details) to multidimensional functions by replacing
left- and right-derivatives with directional derivatives
• A function f : Rn → R is said to be semi-differentiable if the
directional derivative duf(x) exists in all directions u
• Theorem: If f is a semi-differentiable function and x0 is a
local minimum of f , then duf(x0) ≥ 0 ∀u
• Theorem: Suppose f is a semi-differentiable function. Then
f is convex over a set S if and only if d2

uf(x) ≥ 0 for all
x ∈ S and in all directions u
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Score functions and penalized score functions

• In classical statistical theory, the derivative of the
log-likelihood function is called the score function, and
maximum likelihood estimators are found by setting this
derivative equal to zero, thus yielding the likelihood equations
(or score equations):

0 = ∂

∂θ
L(θ),

where L denotes the log-likelihood.
• Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions of the form
Q(θ) = L(θ) + P (θ), yielding the penalized score function
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Penalized likelihood equations

• For ridge regression, the penalized likelihood is everywhere
differentiable, and the extension to penalized score equations
is straightforward
• For the lasso, and for the other penalties we will consider in
this class, the penalized likelihood is not differentiable –
specifically, not differentiable at zero – and subdifferentials are
needed to characterize them
• Letting ∂Q(θ) denote the subdifferential of Q, the penalized
likelihood equations (or penalized score equations) are:

0 ∈ ∂Q(θ).
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KKT conditions

• In the optimization literature, the resulting equations are
known as the Karush-Kuhn-Tucker (KKT) conditions
• For convex optimization problems such as the lasso, the KKT
conditions are both necessary and sufficient to characterize
the solution
• A rigorous proof of this claim in multiple dimensions would
involve some of the details we glossed over, but applying the
idea is straightforward: to solve for β̂, we simply replace the
derivative with the subderivative and the likelihood with the
penalized likelihood
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KKT conditions for the lasso

• Result: β̂ minimizes the lasso objective function if and only if
it satisfies the KKT conditions

1
n

x>
j (y−Xβ̂) = λsign(β̂j) β̂j 6= 0

1
n
|x>

j (y−Xβ̂)| ≤ λ β̂j = 0

• In other words, the correlation between a predictor and the
residuals, x>

j (y−Xβ̂)/n, must exceed a certain minimum
threshold λ before it is included in the model
• When this correlation is below λ, β̂j = 0
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Remarks

• If we set

λ = λmax ≡ max
1≤j≤p

|x>
j y|/n,

then β̂ = 0 satisfies the KKT conditions
• That is, for any λ ≥ λmax, we have β̂(λ) = 0
• On the other hand, if we set λ = 0, the KKT conditions are

simply the normal equations for OLS, X>(y−Xβ̂) = 0
• Thus, the coefficient path for the lasso starts at λmax and

continues until λ = 0 if X is full rank; otherwise the solution
will fail to be unique for λ values below some point λmin
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Lasso and uniqueness

• To elaborate, note that the lasso objective function is convex,
but not strictly convex if X>X is not full rank
• For example, suppose n = 2 and p = 2, with

(y1, x11, x12) = (1, 1, 1) and and (y2, x21, x22) = (−1,−1,−1)
• Then the solutions are

(β̂1, β̂2) =(0, 0) if λ ≥ 1,
(β̂1, β̂2) ∈{(β1, β2) : β1 + β2 = 1− λ, β1 ≥ 0, β2 ≥ 0}

if 0 ≤ λ < 1

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 18 / 24



The lasso
Convex optimization

Soft thresholding

Special case: Orthonormal design

• As with ridge regression, it is instructive to consider the
special case where the design matrix X is orthonormal:
n−1X>X = I
• Result: In the orthonormal case, the lasso estimate is

β̂j(λ) =


zj − λ if zj > λ

0 if |zj | ≤ λ
zj + λ if zj < −λ

where zj = x>
j y/n is the OLS solution
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• The result on the previous slide can be written more
compactly as

β̂j(λ) = S(zj |λ),

where the function S(·|λ) is known as the soft thresholding
operator
• This was originally proposed by Donoho and Johnstone in
1994 for soft thresholding of wavelets coefficients in the
context of nonparametric regression
• By comparison, the “hard” thresholding operator is
H(z, λ) = zI{|z| > λ}, where I(S) is the indicator function
for set S
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Soft and hard thresholding operators
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Probability that β̂j = 0

• With soft thresholding, it is clear that the lasso has a positive
probability of yielding an estimate of exactly 0 – in other
words, of producing a sparse solution
• Specifically, the probability of dropping xj from the model is
P(|zj | ≤ λ)
• Under the assumption that εi

⊥⊥∼ N(0, σ2), we have
zj ∼ N(β, σ2/n) and

P(β̂j(λ) = 0) = Φ
(λ− β
σ/
√
n

)
− Φ

(−λ− β
σ/
√
n

)
,

where Φ is the Gaussian CDF
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Sampling distribution

For σ = 1, n = 10, and λ = 1/2:
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Remarks

• This sampling distribution is very different from that of a
classical MLE:
◦ The distribution is mixed: a portion is continuously distributed,

but there is also a point mass at zero
◦ The continuous portion is not normally distributed
◦ The distribution is asymmetric (unless β = 0)
◦ The distribution is not centered at the true value of β

• These facts create a number of challenges for carrying out
inference using the lasso; we will be putting this issue aside for
now, but will return to it later in the course
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