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Introduction

• Last time, we saw how FWER can be used to address the
question of statistical significance in light of multiple testing
• However, especially in high dimensions, FWER seems like a
rather extreme condition to satisfy
• For example, in our leukemia data set, we could reject 262
hypotheses with only a 5% chance of a single false rejection
among those 262 . . . seems like we could probably reject a few
more and still have a lot of confidence in our results, right?
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True and false discoveries

Suppose we arrange the outcomes of all the tests we conduct into
a 2× 2 table on the basis of our decision to reject the null
hypothesis or not (known, random) and whether the null
hypothesis, in reality, is true or not (fixed, unknown):

Decision
“Don’t reject” “Discovery” Total

Reality Null true h0 −A A h0
Null false h1 −B B h1
Total h−R R h
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“Horizontal” and “vertical” rates

• Classical frequentist statistics is entirely preoccupied with the
“horizontal” proportions in the previous table
◦ Type I error: A/h0
◦ Power: B/h1

• Our focus for today, however, is a “vertical” proportion:
◦ False discovery proportion: A/R

• To prove anything about this proportion, we need to consider
its expected value, or rate; thus, we define the false discovery
rate as E(A/R), and so on for the Type I error rate, etc.
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False discovery rates and high-dimensional data

• The false discovery rate has a much more direct interpretation
than the Type I error rate, in that it explicitly tells what
fraction of the discoveries we are claiming might simply be
due to chance
• This is, of course, appealing in the low-dimensional case as
well, but can’t be done (at least, not outside of a Bayesian
framework) for reasons that we will discuss shortly
• With high-dimensional data, however, we can estimate and
control false discovery rates without the requirement of priors
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Benjamini-Hochberg procedure
Estimation of π0

Benjamini & Hochberg

• In 1995, Yoav Benjamini and Yosef Hochberg published a
paper demonstrating a procedure for rejecting hypotheses in
the multiple comparison setting while controlling the false
discovery rate
• The procedure was not necessarily new, nor was the term
“false discovery rate”, but they were the first to prove that
the procedure controlled the FDR
• The paper has gone on to become extraordinarily influential,
with over 60,000 citations – one of the most highly cited
papers in the history of statistics
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Benjamini-Hochberg procedure
Estimation of π0

The BH procedure

The Benjamini-Hochberg procedure is as follows:
• For a fixed value q, let imax denote the largest index for which

p(i) ≤
i

h
q

• Then reject all hypotheses H0(i) for i = 1, 2, . . . , imax

(Note: the Holm and Westfall-Young procedures we discussed last time
are “step-down” procedures; BH is a “step-up” procedure)
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Benjamini-Hochberg procedure
Estimation of π0

Background: Martingales

• Our proof will use martingale theory; first, a brief background
• A sequence of random variables forms a martingale if

E(Xn+1|X1, X2, . . . , Xn) = Xn

• The most remarkable fact about martingales is the optional
stopping theorem, which states that if T is a random stopping
time that depends only on the past and present (i.e, on
X1, X2, . . . , Xn but not Xn+1, . . .), then E(XT ) = E(X1)
• For example, suppose that the families in a population decide
to have children until they reach the point where they have
one more son than daughter
• One might imagine that this would skew the sex ratio in the
population, but the optional stopping theorem says no, this
does not happen
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FDR control

• Theorem: For independent test statistics and for any
configuration of true and false null hypotheses, the BH
procedure controls the FDR at q
• Remark #1: The above theorem depends on taking A/R to
be 0 when R = 0; typically, this is a minor concern in high
dimensions, but seriously distorts the meaning of FDR for, say,
h = 1
• Remark #2: Our proof assumed independent tests (as did
Benjamini and Hochberg); later efforts have extended the
results to tests that are weakly dependent
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Benjamini-Hochberg procedure
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Comparison with FWER

For the leukemia data,
FDR control is much more
liberal than FWER control;
at 10%, we can reject 335
hypotheses using the
Westfall-Young approach,
compared with 1,635 using
the Benjamini-Hochberg
approach
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Benjamini-Hochberg procedure
Estimation of π0

Remarks

• With FWER, we want to limit the probability of making even
a single mistake
• With FDR, not only do we allow ourselves to make mistakes,
in the leukemia case, we’re allowing ourselves to make well
over a hundred mistakes
• Although FDR has become a widely accepted methodology,
there is no conventional standard for FDR cutoffs the way
there is for p-values
• Part of the reason for this may be that FDR, being more
directly interpretable, is in less need of a standard: an
investigator can immediately weigh the costs of failing to
reproduce the findings in 20% of discoveries vs. 5%
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q-values

• As with FWER and adjusted p-values, it is often convenient to
quantify the significance of each test by obtaining a value that
may be simply compared with, say, .1 to find the tests that
can be rejected with a FDR control of 10%
• In the FDR literature, this is known as the q value:

qj = inf{q : H0j rejected at FDR ≤ q}

• In R, this can be obtained with
p.adjust(p, method='BH')

although keep in mind that the interpretation of false
discovery rates is very different from p-values
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Benjamini-Hochberg procedure
Estimation of π0

Fraction of null hypotheses

• In our proof of the Benjamini-Hochberg theorem, we saw that
their proposed procedure was conservative: its actual FDR is

E(A/R) = h0
h
q

• Letting π0 = h0/h denote the fraction of hypotheses that are
truly null, one potential improvement to the BH procedure is
to estimate π0

• Given such an estimate, we can simply replace h with
ĥ0 = hπ̂0 everywhere it appears in the BH procedure
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Benjamini-Hochberg procedure
Estimation of π0

π̂(t)

• Consider the following straightforward estimator for π0,
originally proposed by John Storey:

π̂0(t) = #{pi > t}
h(1− t)

• The idea behind the estimator is that most of the high
p-values should be coming from the population of null
features; the estimator is simply a method-of-moments
estimator under the assumption that only the null hypotheses
will have p-values above t
• There is a bias-variance tradeoff at play here: for low t, we are
likely including non-null hypotheses, while at high t the
sample size is small
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The bias-variance tradeoff
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• Fitting a spline offers a
way to balance this
tradeoff, giving π̂0 = .53;
thus, we estimate that
47% of the genes being
tested differ between
ALL and AML
• This idea is implemented
in the package qvalue
(on Bioconductor)
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π̂0 and the p-value histogram
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Empirical Bayes setup

• The preceding development of FDR has adopted a purely
frequentist outlook: proposing a procedure and then proving
something about its frequentist properties with respect to
some error rate
• The same formula, however, can be motivated from an
empirical Bayes treatment of the problem as well
• Suppose that the z-values come from a mixture of two
groups: the null group with probability π0 and density f0(z),
and the non-null group with probability π1 and density f1(z)
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Bayes’ rule

• Consider a region Z and let F0(Z) denote the probability, for
a feature in the null group, of z ∈ Z, with

F (Z) = π0F0(Z) + π1F1(Z)

denoting the marginal probability of z ∈ Z
• Suppose we observe z ∈ Z and wish to know the group it
belongs to; applying Bayes’ rule,

P(Null|z ∈ Z) = π0F0(Z)
F (Z)

• This requires three quantities: F0(Z), π0, and F (Z)
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Empirical distribution function

• Assuming z ∼ N(0, 1) holds, we have F0(Z) = Φ(Z)
• We could estimate π0, as we have seen, or we could just use 1
as an upper bound
• Finally, since we observe a large number, h, of z-values, we
can use their empirical distribution to estimate F (Z):

F̂ (Z) = #{zj ∈ Z}
h

• Letting π0 = 1,

P(Null|z ≥ z(i)) =
p(i)
i/h

for the ith ranked z-value; comparing this quantity to q is the
same inequality checked by the BH procedure
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Remarks

• Note that the FDR has a nice interpretation here: whereas in
frequentist statistics, a common misconception is that
p = 0.02 means that P(H0|Data) = 2%, here the FDR
actually does mean that (at least, in the aggregate sense)
• From the empirical Bayes perspective, the FDR methodology
is not a testing procedure with error rates to be controlled,
but an estimation problem
• The biggest consequence of this is with respect to correlated
tests: this poses a considerable challenge to FDR control, but
as an estimate remains reasonably accurate even in the
presence of correlated tests
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Remarks (cont’d)

• The accuracy of π̂0F0(Z)/F̂ (Z) depends primarily on the
accuracy of F̂
• Regardless of whether the z-values are correlated or not, the
empirical distribution function is an unbiased estimate of
F (Z)
• However, it can have a substantial impact on the variance
• Correlated tests, therefore, introduce little bias into our FDR
estimate, but diminish our confidence in its accuracy
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