Theoretical results: Non-asymptotic

Patrick Breheny

March 24

Introduction

- Last time we derived results from a classical perspective in which β^* was fixed as $n \to \infty$
- \bullet Today, we will consider things from a non-asymptotic perspective, obtaining bounds on estimation and prediction error while allowing p>n
- Although results along these lines can be shown for other penalized regression estimators as well, today's lecture will focus entirely on the lasso

A preliminary lemma

- We'll begin by discussing prediction, as we can prove results here without requiring any additional conditions
- First, let us prove the following lemma, from which several of our later results will derive
- Lemma: If $\lambda \geq \frac{2}{n} \|\mathbf{X}^{\top} \boldsymbol{\varepsilon}\|_{\infty}$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le \lambda \|\boldsymbol{\delta}\|_1 + 2\lambda \|\boldsymbol{\beta}^*\|_1 - 2\lambda \|\boldsymbol{\delta} + \boldsymbol{\beta}^*\|_1,$$

where
$$oldsymbol{\delta} = \widehat{oldsymbol{eta}} - oldsymbol{eta}^*$$

Prediction bound

- Based on this lemma, we have the following
- Theorem: If $\lambda \geq \frac{2}{n} \|\mathbf{X}^{\top} \boldsymbol{\varepsilon}\|_{\infty}$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 4\lambda \|\boldsymbol{\beta}^*\|_1$$

• Corollary: If $\lambda = 2\sigma \sqrt{c \log(p)/n}$ and $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\text{i. }}{\sim} \mathrm{N}(0, \sigma^2)$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 8\sigma \|\boldsymbol{\beta}^*\|_1 \sqrt{\frac{c \log p}{n}}$$

with probability at least $1-2\exp\{-\frac{1}{2}(c-2)\log p\}$

- The prediction error increases with noise and dimension, and decreases with sample size – these dependencies are intuitive
- The dependence on $\|\beta^*\|$ is less obvious; it is worth noting, however, that up until this point, we have assumed nothing about β^* (or about \mathbf{X})
- This prediction result differs from our previous results: previously, we had shown that prediction error was $O(n^{-1})$, whereas this result is $O(n^{-1/2})$

Eigenvalue conditions

- In the previous lecture, we introduced an eigenvalue condition: namely, that $\mathbf{X}^{\top}\mathbf{X}/n \to \mathbf{\Sigma}$, with the minimum eigenvalue of $\mathbf{\Sigma}$ bounded above 0
- Why is this important?
- We're finding the value $\widehat{\beta}$ that minimizes $Q(\beta)$; but even if we can guarantee that $Q(\widehat{\beta}) \approx Q(\beta^*)$, if the function is flat, we have no guarantee that $\widehat{\beta}$ is close to β^*
- If p > n, however, it is clear that this condition can never be met

Restricting our eigenvalue conditions

In other words, our previous condition was:

$$\frac{\frac{1}{n}\boldsymbol{\delta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_{2}^{2}} > \tau$$

for all $\delta \neq \mathbf{0}$ and some $\tau > 0$

- However, what if this condition didn't have to be met for all $\delta \in \mathbb{R}^p$, but only for some $\delta \in \mathbb{R}^p$?
- For example, what if we only had to satisfy the condition for $oldsymbol{\delta} \in \mathbb{R}^{\mathcal{S}}$?

A cone condition

- This is a step in the right direction, but not nearly strong enough: for example, suppose a variable in $\mathcal N$ was perfectly correlated with a variable in $\mathcal S$
- We will definitely need to involve ${\cal N}$ in our condition as well, but how to do so without running into dimensionality problems?
- The key here is to require the eigenvalue condition for only those $\pmb{\delta}$ vectors that fall mostly, or at least partially, in the direction of $\pmb{\beta}^*$
- Theorem: If $\lambda \geq \frac{2}{n} \|\mathbf{X}^{\top} \boldsymbol{\varepsilon}\|_{\infty}$, then

$$\|\boldsymbol{\delta}_{\mathcal{N}}\|_1 \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_1$$

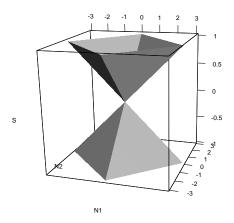
Examples

• For example, suppose $\mathbf{X}^{\top}\mathbf{X}/n$ looks like this:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- ullet We are in trouble if ${\cal S}$ contains either feature 2 or feature 3
- However, if $S = \{1\}$ then there are no flat directions that lie within the lasso cones
- Second example: Suppose $\mathcal{S}=\{1\}$ and $\mathbf{x}_1=\mathbf{x}_2+\mathbf{x}_3+\mathbf{x}_4;$ then $L(\boldsymbol{\beta})$ would be perfectly flat in the direction $\boldsymbol{\delta}=(1,-1,-1,-1)$, with $\|\boldsymbol{\delta}_{\mathcal{N}}\|_1\leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_1$ satisfied this kind of \mathbf{X} must be ruled out also

Illustration



Restricted eigenvalue condition

• Let us now formally state the restricted eigenvalue condition, which I will denote $RE(\tau)$: There exists a constant $\tau>0$ such that

$$\frac{\frac{1}{n}\boldsymbol{\delta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_{2}^{2}} \geq \tau$$

for all nonzero $\boldsymbol{\delta}: \|\boldsymbol{\delta}_{\mathcal{N}}\|_1 \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_1$

• Note: This condition is specific to linear regression; the general condition is known as restricted strong convexity and would consist of replacing $\mathbf{X}^{\top}\mathbf{X}/n$ with $\nabla^2 L(\boldsymbol{\beta})$

Other conditions

This is certainly not the only condition that people have used to prove things in the high-dimensional setting; other similar conditions include

- Irrepresentable condition
- Restricted isometry property (RIP)
- Compatibility condition
- Coherence condition
- Sparse Riesz condition

All of these conditions require that $\mathbf{X}_{\mathcal{S}}$ is full rank as well as placing some sort of restriction on how strongly features in \mathcal{S} can be correlated with features in \mathcal{N}

Estimation consistency

- With this condition in place, we're ready to prove the following theorem
- Theorem: Suppose X satisfies RE(τ) and $\lambda \geq \frac{2}{n} \| \mathbf{X}^{\top} \boldsymbol{\varepsilon} \|_{\infty}$; then

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 \le \frac{3}{\tau} \lambda \sqrt{|\mathcal{S}|}$$

• Corollary: Suppose X satisfies RE(au), $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\perp}{\sim} \mathrm{N}(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 \le \frac{6\sigma}{\tau} \sqrt{\frac{c|\mathcal{S}|\log p}{n}}$$

with probability $1-2\exp\{-\frac{1}{2}(c-2)\log p\}$

- This rate makes a lot of sense:
 - The error of the oracle estimator is on the order $\sigma \sqrt{|\mathcal{S}|/n}$: no method can estimate \mathcal{S} parameters based on n observations at a better rate than this
 - \circ The $\log p$ term is the price we pay to search over p features in order to discover the sparse set $\mathcal S$
- Note also the dependence on the eigenvalue parameter τ ; in particular, if the minimum eigenvalue is close to 0, the estimate rate will suffer significantly

Another look at prediction error

- Now that we've made some assumptions about X and β^* , does this affect our prediction accuracy?
- Theorem: Suppose X satisfies RE(τ) and $\lambda \geq \frac{2}{n} \|\mathbf{X}^{\top} \boldsymbol{\varepsilon}\|_{\infty}$; then

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le \frac{9}{\tau} \lambda^2 |\mathcal{S}|$$

• Corollary: Suppose X satisfies RE(au), $\mathbf{y} = \mathbf{X} \boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\text{i. }}{\sim} \mathrm{N}(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\frac{1}{n} \|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 36c \frac{\sigma^2}{\tau} \frac{|\mathcal{S}| \log p}{n}$$

with probability $1-2\exp\{-\frac{1}{2}(c-2)\log p\}$

- We have now derived two results concerning the prediction error of the lasso:
 - No assumptions on ${\bf X}$ or ${\boldsymbol \beta}^*$: ${\rm MSPE} = O(n^{-1/2})$, the "slow rate"
 - o β^* sparse, ${\bf X}$ satisfies RE(au): MSPE = $O(n^{-1})$, the "fast rate"
- Further theoretical work has shown that these bounds are in fact tight: no method can achieve the fast rate without additional assumptions

Irrepresentable condition

- Finally, we'll take a look at the selection consistency of the lasso in high dimensions, although we're not going to have time to prove our result in class
- We begin by noting that our restricted eigenvalue condition is not enough to establish selection consistency; we need something stronger
- The feature matrix \mathbf{X} satisfies the *irrepresentable condition*, which I will denote IR(τ), if there exists $\tau > 0$ such that

$$\|(\mathbf{X}_{\mathcal{S}}^{\mathsf{T}}\mathbf{X}_{\mathcal{S}})^{-1}\mathbf{X}_{\mathcal{S}}^{\mathsf{T}}\mathbf{X}_{\mathcal{N}}\|_{\infty} \leq 1 - \tau,$$

where $\|\mathbf{A}\|_{\infty} = \max_{j} \|\mathbf{a}_{j}\|_{1}$

- Note that for all $j \in \mathcal{N}$, the irrepresentable condition places a bound on $(\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{X}_{\mathcal{S}})^{-1}\mathbf{X}_{\mathcal{S}}^{\top}\mathbf{x}_{j}$, the coefficient for regressing \mathbf{x}_{j} on the features in \mathcal{S}
- In words, this is saying no noise feature can be highly "represented" by the true signal features; if this were the case, we might select the noise feature instead of the true signal
- ullet For example, if $\mathbf{X}_{\mathcal{S}}$ and $\mathbf{X}_{\mathcal{N}}$ were orthogonal, then au=1
- Note that the IR(τ) condition requires $\Sigma_{\mathcal{S}} = \frac{1}{n} \mathbf{X}_{\mathcal{S}}^{\top} \mathbf{X}_{\mathcal{S}}$ to be invertible; let ξ_* denote its minimum eigenvalue

Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that **X** satisfies IR(τ) and $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\perp}{\sim} \mathrm{N}(0, \sigma^2)$; let

$$\lambda = \frac{8\sigma}{\tau} \sqrt{\frac{\log p}{n}}$$

$$B = \lambda \left(\frac{4\sigma}{\sqrt{\xi_*}} + \|\mathbf{\Sigma}_{\mathcal{S}}^{-1}\|_{\infty} \right)$$

Then with probability at least $1 - c_1 \exp\{-c_2 n\lambda^2\}$, the lasso solution $\widehat{\beta}$ has the following properties:

Selection consistency theorem (Wainwright, 2009) (cont'd)

- Uniqueness: $\widehat{m{eta}}$ is unique
- Estimation error bound: $\|\widehat{\boldsymbol{\beta}} \boldsymbol{\beta}^*\|_{\infty} \leq B$
- No false inclusions: $\hat{S} \subseteq S$
- No false exclusions: $\hat{\mathcal{S}}$ includes all indices j such that $|\beta_j^*| > B$ and is therefore selection consistent provided that all elements of $\boldsymbol{\beta}_{\mathcal{S}}^*$ are at least that large