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Introduction

• Generally speaking, there are two sorts of theoretical results
for high-dimensional regression models:
◦ Classical/asymptotic results, in which p is fixed
◦ Modern/non-asymptotic results, in which p increases with n,

or in which finite-sample bounds are obtained
• The classical form of analysis, in which we treat the parameter
as fixed (i.e., β∗ is fixed), offers a number of interesting
insights into the methods we have introduced so far, and is
the setup we will be using today
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Asymptotic setup: p > n

• However, these results also have the potential to be
misleading, in that, if n increases while β remains fixed, in the
limit we are always looking at n� p situations; is this really
relevant to p� n?
• For this reason, it is also worth considering theoretical analysis
in which p is allowed to increase with n
• Typically, this involves assuming that the size of the sparse
set, |S|, stays fixed, and it is only the size of the null set that
increases, so that |S| � n and |N | � n; we will discuss this
more next time
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Sparsity regimes

• The setup we have been describing is sometimes referred to as
“hard sparsity”, in which β has a fixed, finite number of
nonzero entries
• An alternative setup is to assume that most elements of β are

small, but not necessarily exactly zero; i.e., assume something
along the lines of letting m = max{|β∗

j | : j ∈ N}
• Yet another setup is to assume that β is not necessarily

sparse, but is limited in size in the sense that
∑

j |β∗
j | ≤ R

(i.e., within an `1 “ball” of radius R about 0)
• We will focus on the hard sparsity setting; many of the results
are applicable to the other settings as well, however
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Orthonormal case: Introduction

• We will begin our examination of the theoretical properties of
the lasso by considering the special case of an orthonormal
design: X>X/n = I for all n, with y = Xβ∗ + ε and
εi

⊥⊥∼ N(0, σ2)
• For the sake of brevity, I’ll refer to these assumptions in what
follows as (O1)
• This might seem like an incredibly special case, but many of
the important theoretical results carry over to the general
design case provided some additional regularity conditions are
met
• Once we show the basic results for the lasso, it is
straightforward to extend them to MCP and SCAD
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Eliminating all the variables in N

• Let us begin by considering the question: how large must λ be
in order to ensure that all the coefficients in N are eliminated?
• Theorem: Under (O1),

P(∃j ∈ N : β̂j 6= 0) ≤ 2 exp
{
−nλ

2

2σ2 + log p
}
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Corollary

• So how large must λ be in order to accomplish this with
probability 1?
• Corollary: Under (O1), if

√
nλ→∞, then

P(β̂j = 0∀j ∈ N )→ 1

• Note that if instead
√
nλ→ c, where c is some constant, then

P(β̂j = 0∀j ∈ N )→ 1− ε, where ε > 0
• In other words, if

√
nλ is not large enough, there remains the

possibility that the lasso will select variables from N
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A glimpse of p� n theory

• Nevertheless, if λ = O(σ
√
n−1 log p), then there is at least a

chance of completely eliminating all variables in N ; setting λ
to something of this order will come up often in our next
lecture
• For now, we can note that unless p is growing exponentially
fast with n, the ratio log(p)/n can still go to zero even if
p > n, giving some insight into how high-dimensional
regression is possible
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Selecting all the variables in S

• The previous theorem considered eliminating all of the
variables in N
• Likewise, we can ask: what is required in order for the lasso to
select all of the variables in S?
• Theorem: Under (O1), if λ→ 0 as n→∞, then

P{sign(β̂j) = sign(β∗
j )∀j ∈ S} → 1
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Selection consistency

• Putting these two theorems together, we obtain the
asymptotic conditions necessary for selection consistency as
n→∞
• For the lasso to be selection consistent (select the correct
model with probability tending to 1), we require:
◦ λ→ 0
◦ √nλ→∞
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Estimation consistency

• Let us now consider estimation consistency
• It is trivial to show that under (O1), β̂ is a consistent

estimator of β∗ if λ→ 0: if λ→ 0, β̂ converges to the OLS,
which is consistent
• A more interesting condition is

√
n-consistency

• Theorem: Under (O1), β̂ is a
√
n-consistent estimator of β∗

if
√
nλ→ c, with c <∞
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Remarks

• Corollary: Suppose ∃j : β∗
j 6= 0. Then under (O1), β̂ is a√

n-consistent estimator of β∗ if and only if
√
nλ→ c, with

c <∞
• In this case,

√
n(β̂ − β∗) will contain a bias term on the order

of
√
nλ, which will blow up unless λ rapidly goes to zero
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Remarks (cont’d)

• It is possible for the lasso to be
√
n-consistent

• It is also possible for the lasso to be selection consistent
• However, it is not possible for the lasso to achieve both goals

at the same time
• Specifically, we require

√
nλ→∞ for selection consistency,

but
√
nλ→ c <∞ for

√
n-estimation consistency

• As we will see soon, this is one of the main theoretical
shortcomings of the lasso that methods such as MCP and
SCAD aim to correct
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Prediction and estimation in the orthonormal case

• In the orthonormal case, note that

1
n
‖Xβ̂ −Xβ∗‖2 = ‖β̂ − β∗‖2

• Thus, since
√
n(β̂ − β∗) = Op(1) by our previous theory, we

have the immediate corollary that if
√
nλ→ c, the prediction

error is Op(n−1)
• Prediction and estimation are not necessarily equivalent when
features are correlated, however
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Remarks

• Still, we see the connection between prediction and estimation
– this suggests that if we use a prediction-based criterion such
as cross-validation to choose λ, we emphasize estimation
accuracy over selection accuracy
• In other words, cross-validation will tend to choose small
values of λ; recall that if

√
nλ→ c <∞,

◦ All βj : j ∈ S will be selected
◦ Some βj : j ∈ N will also be selected
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Screening property

• This result (lasso with cross-validation selects all the true
features, but also selects null features) is true in general, not
just the orthonormal case
• This means that the lasso is not ideal if one desires a low false
positive rate among the features selected by a model
• However, the lasso can be very useful for purposes of a
screening tool to recover the important variables as the first
step in an analysis such as the adaptive lasso
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Extension to MCP and SCAD

• The lasso cannot simultaneously achieve both
√
n-consistency

and selection consistency; MCP and SCAD, however, can
• In fact, they can achieve an even stronger result called the

oracle property
• Let β̂

∗ denote the oracle estimator:
◦ β̂

∗
N = 0

◦ β̂
∗
S minimizes ‖y−XSβS‖2

2

• Theorem: Under (O1), suppose λ→ 0 and
√
nλ→∞.

Then β̂ = β̂
∗ with probability tending to 1, where β̂ is either

the MCP or SCAD estimate.
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More on the oracle property

• The oracle property is usually defined as: β̂ must satisfy
◦ β̂N = 0 with probability tending to 1
◦ β̂S is

√
n-consistent for β∗S

• This broader definition encompasses the adaptive lasso as well
◦ The adaptive lasso would never be exactly equal to the oracle

estimator β̂
∗

◦ However, with a consistent initial estimator, the bias term goes
to zero, giving

√
n-consistency
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General case: Introduction

• The essence of these results carries over to the case of a
general design matrix, although we will need some new
conditions regarding eigenvalues
• In what follows, I will refer to the following set of assumptions
as (C1):
◦ y = Xβ + ε

◦ εi
⊥⊥∼ N(0, σ2)

◦ 1
nX>X = Σn, with Σn → Σ

◦ Σ has minimum eigenvalue ξ∗ and maximum eigenvalue ξ∗
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General case:
√

n-consistency

• For technical reasons, we must start our discussions of the
general case with estimation (later proofs require the
consistency result)
• Theorem: Under (C1), the lasso estimator β̂ is a√

n-consistent estimator of β∗ if (i)
√
nλ→ c, with c <∞

and (ii) ξ∗ > 0.
• As in the orthonormal case, note that if

√
nλ→∞, the result

no longer holds
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General case: Prediction accuracy

• Theorem: Under (C1), if (i)
√
nλ→ c, with c <∞ and (ii)

ξ∗ > 0, we have

1
n
‖Xβ̂ −Xβ∗‖2 = Op(n−1)

• You may be wondering: do we actually need ξ∗ > 0 for
prediction accuracy?
• Turns out the answer is no, you don’t, although the prediction
accuracy isn’t quite as good if X is not full rank; we’ll return
to this point next time
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MCP and SCAD in the general case: Consistency

• For MCP and SCAD, we can prove some stronger results
• First, we provide a corresponding consistency theorem; note
the weaker condition on λ
• Theorem: Under (C1), β̂ is a

√
n-consistent estimator of β∗

if (i) λ→ 0 and (ii) ξ∗ > 0, where β̂ is an MCP or SCAD
estimator
• Note: I say “an” estimator rather than “the” estimator since
what we’re actually proving is that there exists a local
minimizer of the MCP/SCAD objective with

√
n-consistency
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MCP and SCAD in the general case: Oracle property

• Based on this result, we can also prove that MCP and SCAD
enjoy the oracle property in the general case:
• Theorem: Under (C1), if (i) λ→ 0, (ii)

√
nλ→∞, and (iii)

ξ∗ > 0, then β̂ = β̂
∗ with probability tending to 1, where β̂ is

an MCP or SCAD estimator
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