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Introduction

• In today’s lecture, we will discuss the performance of
nonconvex penalties with respect to the signal-to-noise ratio
of the data-generating process, the most critical factor
determining their success relative to the lasso
• We will then turn our attention to the details of model fitting,
discussing algorithms for nonconvex penalties as well as the
impact of nonconvexity on model-fitting
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Signal to noise ratio

• For linear regression,

Var(Y ) = Var(E(Y |X)) + E(Var(Y |X))
= βT Var(X)β + σ2

• The first term in the sum is known as the signal and the
second term the noise
• Thus, we may define the signal-to-noise ratio

SNR = βT Var(X)β/σ2
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SNR and R2

• Recall that we have seen this decomposition before, in
calculating R2, which is also a function of the signal and noise
• In particular, note that

R2 = SNR
1 + SNR

• As a general piece of advice, I strongly recommend
considering the signal-to-noise ratio when designing
simulations, and avoiding settings where SNR is, say, 50
(R2 = .98); is this realistic?
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Simulation: Setup

• To see the impact of SNR, let’s set n = 50, p = 100, and let
all features xj follow independent, standard Gaussian
distributions
• In the generating model, we set β1 = β2 = β3 = · · · = β6 6= 0

and β7 = β8 = · · · = β100 = 0, varying the nonzero values of
β1 through β6 to produce a range of signal to noise ratios
• For each data set, an independent data set of equal size was
generated for the purposes of selecting the regularization
parameter
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Simulation: Results
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Remarks

• The motivation of MCP/SCAD/etc. is to eliminate bias for
large coefficients; it should not come as little surprise, then,
that the advantage of these methods only becomes apparent
when some nonzero coefficients are large
• It is also worth noting that γ ≈ 3 is generally a reasonable

choice for MCP – its performance was never far from the best
• Also note that the SCAD is somewhat less sensitive to the
choice of γ, in the sense that many values of γ produce rather
lasso-like estimates
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Algorithm

Letting z̃ = n−1xT
j r̃j , F is the firm-thresholding operator, and

TSCAD is the SCAD-thresholding operator, the CD algorithm for
MCP/SCAD is

repeat
for j = 1, 2, . . . , p

z̃j = n−1 ∑n
i=1 xijri + β̃

(s)
j

β̃
(s+1)
j ←

{
F (z̃j |λ, γ) for MCP, or
TSCAD(z̃j |λ, γ) for SCAD

ri ← ri − (β̃(s+1)
j − β̃(s)

j )xij for all i
until convergence

The algorithm is identical to our earlier algorithm for the lasso
except for the step in which β̃j is updated
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Convergence

• Although the MCP and SCAD penalties are not convex
functions, Q(βj |β−j) is still convex
• As a result, the coordinate-wise updates are unique and always
occur at the global minimum with respect to that coordinate
• Proposition: Let {β(s)} denote the sequence of coefficients
produced at each iteration of the coordinate descent
algorithms for SCAD and MCP. For all s = 0, 1, 2, . . .,

Q(β(s+1)) ≤ Q(β(s)).

Furthermore, the sequence is guaranteed to converge to a
local minimum of Q(β).
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Local linear approximation

• For MCP and SCAD, one can obtain closed-form
coordinate-wise minima and use those solutions as updates
• An alternative approach, which is particularly useful in
penalties that do not yield tidy closed-form solutions, is to
construct a local approximation of the penalty about a point
β̃:

P (|β|) ≈ P (|β̃|) + P ′(|β̃|)(|β| − |β̃|)

• Note that with this approximation, the penalty takes on the
form of the lasso penalty (with P ′(|β̃|) playing the role of the
regularization parameter) plus a constant
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LLA algorithm

• The approximation is applied in an iterative fashion: at the
sth iteration, letting λ̃j = P ′(|β(s−1)

j |), the update is given by
solving for the value minimizing

1
2n‖y−Xβ‖2 +

p∑
j=1

λ̃j |βj |

• Note that this equation is essentially identical to the one for
the adaptive lasso; however, the adaptive lasso weights are
assigned in a more or less ad hoc fashion based on an initial
estimator, while the LLA modifications to λ are explicitly
determined by the penalty function P
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Remarks

• Like coordinate descent, the local linear approximation (LLA)
algorithm is guaranteed to drive the objective function
downhill with every iteration and to converge to a local
minimum of Q(β)
• For MCP and SCAD, CD is more efficient, as it avoids the
extra approximation introduced by LLA
• However, LLA is still quite efficient, and a valuable alternative
when dealing with penalties without a simple solution in the
one-dimensional case
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Convexity challenges

• While the objective functions for SCAD and MCP are convex
in each coordinate dimension, they are not convex over Rp

• Thus, multiple minima may exist, each satisfying the KKT
conditions
• Neither the CD or LLA algorithms are guaranteed to converge
to the global minimum in such cases
• As we have discussed earlier, the existence of multiple minima
poses considerable problems for MLE / penalized MLE
methods, both numerically (convergence to an inferior
solution) and statistically (increased variance as the solution
jumps from one minima to another)
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Global convexity

• We begin by noting that it is possible for the objective
function Q to be convex with respect to β even though the
penalty component is nonconvex
• Letting cmin denote the minimum eigenvalue of XT X/n, the
MCP objective function is strictly convex if γ > 1/cmin, while
the SCAD objective function is strictly convex if
γ > 1 + 1/cmin

• In this case, the coordinate descent and LLA algorithms will
converge to the unique global minimum of Q
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Is global convexity desirable?

• However, obtaining strict convexity is not always possible or
desirable; for example, in high-dimensional settings where
p > n, cmin = 0 and the MCP/SCAD objective functions
cannot be globally convex
• Nevertheless, as we saw in the earlier simulations (where
p > n, it is not true in general that convex penalties
outperform nonconvex ones in such scenarios
• For low signal-to-noise ratios there was indeed some benefit to
increasing γ in an effort to make the objective function more
convex; however, for larger SNR values, this strategy
diminished estimation accuracy
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Local convexity

• One reason this happens is that the solutions are sparse
• Although Q(β) may not be convex over the entire
p-dimensional parameter space (i.e., globally convex), it is still
convex on many lower-dimensional spaces
• If these lower-dimensional spaces contain the solution of
interest, then the existence of other local minima in much
higher dimensions may not be relevant
• This concept is known as local convexity
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Local convexity: Details

• Recall the conditions for global convexity: γ must be greater
than 1/c∗ for MCP and 1 + 1/c∗ for SCAD, where c∗ denoted
the minimum eigenvalue of XT X/n
• A straightforward modification is to include only the
covariates with nonzero coefficients (the covariates which are
“active” in the model) in the calculation of c∗
• Note that neither γ nor X change with λ; what does vary
with λ is the set of active covariates; generally speaking, this
will increase as λ decreases
• Thus, local convexity of the objective function will not be an
issue for large λ, but may cease to hold as λ is lowered past
some critical value λ∗
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Convexity diagnostic: Example (MCP)
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Convexity diagnostic: Example (cont’d)

0.0

0.2

0.4

0.6

0.8

1.0
Q

(β
)

β1 β2

λ = 0.25

λ = 0.11

λ = 0.42

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 19 / 20



Signal to noise ratio
Algorithms

Coordinate descent
Local approximations
Convexity

Remarks

• As the second figure indicates, when λ = 0.42, β1 clearly
minimizes the objective function and when λ = 0.11, β2
clearly minimizes the objective function
• For λ ≈ 0.25, however, the objective function is very broad
and flat, indicating substantial uncertainty about which
solution is preferable
• Calculation of the locally convex region (the unshaded region
in the earlier figure) can be a useful diagnostic in practice to
indicate which regions of the solution path may suffer from
multiple local minima and discontinuous paths
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