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Introduction

• Although the lasso has many excellent properties, it is a
biased estimator and this bias does necessarily not go away as
n→∞
• For example, in the orthonormal case,

E|β̂j − βj | = 0 if βj = 0
E|β̂j − βj | ≈ βj if |βj | ∈ [0, λ]
E|β̂j − βj | ≈ λ if |βj | > λ

• Thus, the bias of the lasso estimate for a truly nonzero
variable is about λ for large regression coefficients coefficients.
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Adaptive lasso: Motivation

• Given that the bias of the estimate is determined by λ, one
approach to reducing the bias of the lasso is to use the
weighted penalty approach we saw last time: λj = wjλ

• If one was able to choose the weights such that the variables
with large coefficients had smaller weights, then we could
reduce the estimation bias of the lasso while retaining its
sparsity property
• Indeed, by more accurately estimating β, one would even be
able to improve on the variable selection accuracy of the lasso
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Adaptive lasso: Motivation (cont’d)

• All of this may seem circular in the sense that if we already
knew which regression coefficients were large and which were
small, we wouldn’t need to be carrying out a regression
analysis in the first place
• However, it turns out that the choice of w does not need to be
terribly precise in order to realize benefits from this approach
• In practice, one can obtain reasonable values for w from any

consistent initial estimator of β
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Adaptive lasso

• Let β̃ denote the initial estimate (from, say, OLS or the lasso)
• The adaptive lasso estimate β̂ is then defined as the argument
minimizing the following objective function:

Q(β|X,y,w) = 1
2n‖y−Xβ‖22 + λ

∑
j

wj |βj | ,

where wj = |β̃j |−1

• Note that this weighting scheme assigns smaller weights to
larger regression coefficients, and that if the initial estimate
β̃j = 0, we have wj =∞, so β̂j = 0.
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Two-stage vs. pathwise approaches

• In the above approach, known as a two-stage approach, a
single initial estimate β̃ is made, which in turn produces a
single set of weights w, which are held constant across all
values of λ
• An alternative approach, known as a pathwise approach is to

let the weights change with λ:

wj(λ) = w(β̃j(λ))

• Here, the initial estimate is typically a lasso estimator, so that
λ has the same meaning for the initial estimator as it does for
the re-weighted, or adaptive, estimator
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Alternative weighting strategies

• There are many possibilities besides wj = |β̃j |−1 for choosing
weights based on initial estimates
• Really, any nonincreasing function w(β) would be a

reasonable way to choose weights, and could be used in either
a two-stage or adaptive approach, although the resulting
estimators may be quite different
• For example, one might allow wj = |β̃j |−γ or
wj = 1{|β̃j | ≤ τ}
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Hybrid and relaxed lasso approaches

• A more extreme weighting scheme is

wj =
{

0 if β̃j 6= 0,
∞ if β̃j = 0

• When applied in a two-stage fashion, this approach is known
as the lasso-OLS hybrid estimator (i.e., we use the lasso for
variable selection and OLS for estimation)
• When the approach is applied in a pathwise fashion, it is
known as the relaxed lasso
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SCAD and MCP
Solutions in the orthonormal case
Solution paths
The effect of γ

Single-stage approaches to bias reduction

• The adaptive lasso consists of a two-stage approach involving
an initial estimator to reduce bias for large regression
coefficients
• An alternative single-stage approach is to use a penalty that
tapers off as β becomes larger in absolute value
• Unlike the absolute value penalty employed by the lasso, a
tapering penalty cannot be convex
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Folded concave penalties

• Rather, the penalty function P (β|λ) will be concave with
respect to |β|
• Such functions are often referred to as folded concave

penalties, to clarify that while P (·) itself is neither convex nor
concave, it is concave on both the positive and negative
halves of the real line, and also symmetric (or folded) due to
its dependence on the absolute value
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Objective function for folded concave penalties

• Consider the objective function

Q(β|X,y) = 1
2n‖y−Xβ‖2 +

p∑
j=1

P (βj |λ, γ),

where P (β|λ, γ) is a folded concave penalty
• Unlike the lasso, many concave penalties depend on λ in a

non-multiplicative way, so that P (β|λ) 6= λP (β)
• Furthermore, they typically involve a tuning parameter γ that

controls the concavity of the penalty (i.e., how rapidly the
penalty tapers off)
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SCAD

• A variety of nonconvex penalties have been proposed; one of
the earliest and most influential was the smoothly clipped
absolute deviations (SCAD) penalty:

P (x|λ, γ) =


λ|x| if |x| ≤ λ,
2γλ|x|−x2−λ2

2(γ−1) if λ < |x| < γλ,
λ2(γ+1)

2 if |x| ≥ γλ

for γ > 2
• Note that SCAD coincides with the lasso until |x| = λ, then

smoothly transitions to a quadratic function until |x| = γλ,
after which it remains constant for all |x| > γλ
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SCAD: Derivative

• It is typically more instructive to consider a penalty’s
derivative – i.e., the contribution made by the penalty to the
penalized estimating equations (KKT conditions)
• The derivative of the SCAD penalty is

Ṗ (x;λ, γ) =


λ if |x| ≤ λ,
γλ−|x|
γ−1 if λ < |x| < γλ,

0 if |x| ≥ γλ

• The SCAD penalty retains the penalization rate (and bias) of
the lasso for small coefficients, but continuously relaxes the
rate of penalization as the absolute value of the coefficient
increases
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MCP

The idea behind the minimax concave penalty (MCP) is very
similar:

Pγ(x;λ) =
{
λ|x| − x2

2γ , if |x| ≤ γλ
1
2γλ

2, if |x| > γλ

for γ > 1
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MCP: Derivative

• Its derivative is

Ṗγ(x;λ) =
{

(λ− |x|γ )sign(x), if |x| ≤ γλ,
0, if |x| > γλ.

• As with SCAD, MCP starts out by applying the same rate of
penalization as the lasso, then smoothly relaxes the rate down
to zero as the absolute value of the coefficient increases
• In comparison to SCAD, however, the MCP relaxes the
penalization rate immediately while with SCAD the rate
remains flat for a while before decreasing
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SCAD and MCP: Illustration
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SCAD and MCP: Illustration (cont’d)

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

β

P⋅ (β
|λ

, γ
)

Lasso

SCAD

MCP

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 17 / 34



Adaptive lasso
Concave penalties

SCAD and MCP
Solutions in the orthonormal case
Solution paths
The effect of γ

Remarks

• These plots illustrate the sense in which the MCP is minimax
concave
• Out of all penalty functions continuously differentiable on

(0,∞) that satisfy Ṗ (0+;λ) = λ and Ṗ (t;λ) = 0 for all
t ≥ γλ, the MCP minimizes the maximum concavity

κ = sup
0<t1<t2

Ṗ (t1;λ)− Ṗ (t2;λ)
t2 − t1

.

• As the figure shows, the derivatives of SCAD and MCP are
equal at 0 and again at γλ, but MCP has a concavity of
κ = 1/γ = 1/3 over this region while SCAD has a maximum
concavity of κ = 1/(γ − 1) = 1/2
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MCP & firm thresholding

• As with the lasso, MCP and SCAD have closed-form solutions
in the orthonormal case that provide insight into how the
methods work
• For MCP, the univariate solution is known as the firm

thresholding operator:

F (z|λ, γ) =
{

γ
γ−1S(z|λ) if |z| ≤ γλ,
z if |z| > γλ

,

where z = x>y/n denotes the unpenalized (OLS) solution
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Remarks: Firm thresholding

• As γ →∞, the firm thresholding operator becomes equivalent
to the soft thresholding operator: F (z|λ, γ)→ S(z|λ)
• As γ → 1, it becomes equivalent to hard thresholding
• Thus, as γ changes, the solution bridges the gap between soft
and hard thresholding; hence the name “firm thresholding”
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SCAD thresholding

• The SCAD solution is similar, although somewhat more
complicated
• The SCAD thresholding operator is

TSCAD(z|λ, γ) =


S(z|λ), if |z| ≤ 2λ,
γ−1
γ−2S(z| γλγ−1), if 2λ < |z| ≤ γλ,
z, if |z| > γλ
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Remarks: SCAD thresholding

• As with MCP, TSCAD(·|λ, γ)→ S(·|λ) as γ →∞
• However, as γ → 2, TSCAD(·|λ, γ) does not converge to hard

thresholding; instead, it converges to{
S(z;λ), if |z| ≤ 2λ,
z, if |z| > 2λ

• In other words, both TSCAD and F converge to discontinuous
functions as γ approaches its minimum value: for the firm
thresholding operator F , the solution jumps from 0 to λ as z
exceeds λ, while for the SCAD thresholding operator TSCAD,
the solution jumps from λ to 2λ as z exceeds 2λ
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SCAD and MCP thresholding
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Solution paths

• To get a sense of how the MCP, SCAD, and adaptive lasso
estimates compare to those of the regular lasso, we consider
here the solution paths for the four penalties fit to the same
data
• We generate data from the linear regression model

yi =
1000∑
j=1

xijβj + εi, i = 1, . . . , 200,

where (β1, . . . , β4) = (4, 2,−4,−2) and the remaining
coefficients are zero
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Solution path: Lasso

3.0 2.5 2.0 1.5 1.0 0.5 0.0

−4

−2

0

2

4

λ

β̂

Lasso

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 25 / 34



Adaptive lasso
Concave penalties

SCAD and MCP
Solutions in the orthonormal case
Solution paths
The effect of γ

Solution path: Adaptive lasso (pathwise)
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Solution path: MCP (γ = 3)
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Solution path: SCAD (γ = 4)
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Remarks

• The primary way in which adaptive lasso, SCAD, and MCP
differ from the lasso is that they allow the estimated
coefficients to reach large values more quickly than the lasso
• In other words, although the methods all shrink most of the
coefficients towards zero, MCP, SCAD, and the adaptive lasso
apply less shrinkage to the nonzero coefficients; this is what
we refer to in the book as bias reduction
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Remarks (cont’d)

• In this example, one can clearly see the piecewise components
of MCP and SCAD
• In particular, it is worth noting that both MCP and SCAD
possess an interval of λ values over which all the estimates are
flat – over this region, the estimates are the same as those of
ordinary least squares regression, but with only the four
variables with nonzero effects included
• These estimates are referred to as the oracle estimates
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The role of γ in SCAD and MCP

• As discussed previously, the tuning parameter γ for the SCAD
and MCP estimates controls how fast the penalization rate
goes to zero
• This, in turn, affects the bias of the estimates as well as the
stability of the estimate in the sense that as the penalty
becomes more concave, there is a greater chance for multiple
local minima to exist
• As γ →∞, both the MCP and SCAD penalties converge to
the `1 penalty
• As γ approaches its minimum value, bias is minimized, but
both estimates become unstable
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γ and the bias-variance tradeoff

• “Stability” here refers to the optimization sense that an
objective function with a single, well-defined minimum is
stable while optimization problems with multiple local minima
tend are unstable
• However, the same remarks apply with respect to the
statistical properties of the estimators, in the sense that a
more highly variable estimator is less stable
• For SCAD and MCP, lower values of γ produce more highly

variable, but less biased, estimates
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Bias-variance tradeoff: Illustration
For σ2 = 6, λ = 1, n = 10, and there is a single feature with
β = 1:
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Effect of γ on solution paths

Same data as the earlier path example (MCP paths shown)
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