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Introduction

• As we discussed last time, the parameter λ controls the
tradeoff between the penalty and the model fit, and therefore
has a very large impact on the resulting estimate:
◦ As λ→ 0, Q approaches L and β̂ approaches the OLS

estimate
◦ On the other hand, as λ→∞, the penalty dominates the

objective function and β̂ ≈ 0
• Clearly, selection of λ is a very important practical aspect of
fitting penalized regression models.
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General regression framework

• In general, a reasonable approach to selecting λ in an
objective manner is to choose the value of λ with the greatest
predictive power: if λ = 1 can predict future observations
better than λ = 5, this is a clear reason to prefer λ = 1
• Suppose that E(yi) = f(xi), Var(yi) = σ2, and that we have
fit a model to obtain f̂ , an estimate of f , and let {f̂i}ni=1
denote the fitted values, where f̂i = f̂λ(xi)
• It is clearly misleading to evaluate predictive accuracy by
comparing f̂i to yi; the observed value yi has already been
used to calculate f̂i, and is therefore not a genuine prediction
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Prediction error

• Simply calculating the residual sum of squares (RSS), then,
will overestimate the true predictive accuracy of the model
• Instead, we must examine how well f̂i predicts a new
observation ynew

i generated from the underlying model:

ynew
i = f(xi) + εnew

i

• Then the prediction error can be measured by

PE(λ) =
n∑
i=1
{ynew
i − f̂i(λ)}2

• To clarify, under this framework we are measuring new
responses {ynew

i }ni=1, but at the original values of the
predictors {xi}ni=1
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Expected prediction error

• The model with the greatest predictive power, then, is the
model that minimizes the expected prediction error

EPE(λ) = E
n∑
i=1
{ynew
i − f̂i(λ)}2,

where the expectation is taken over both the original
observations {yi}ni=1 as well as the new observations
{ynew
i }ni=1

• Theorem:

EPE(λ) = E
n∑
i=1
{yi − f̂i(λ)}2 + 2

n∑
i=1

Cov{f̂i(λ), yi}
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Remarks

• So the expected prediction error consists of two terms:
◦ The first term is the within-sample fitting error
◦ the second term is a bias correction factor that arises from the

tendency of within-sample fitting error to underestimate
out-of-sample prediction error, also known as the optimism of
the model fit

• The second term can also be considered a measure of model
complexity, or degrees of freedom:

df =
n∑
i=1

Cov(f̂i, yi)
σ2

= tr{Cov(f̂ ,y)}
σ2
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Degrees of freedom: Linear regression

• For example, consider OLS regression, with
f̂ = X(XTX)−1XTy
• Result:

df = rank(X)

• Thus, our covariance-based definition agrees with the usual
notion of degrees of freedom as the number of parameters (in
an unpenalized model)
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Degrees of freedom: Ridge regression

• A model fitting method is said to linear if we can write
f̂ = Sy for some matrix S
• Result: For any linear method,

df = tr(S)

• Ridge regression is a linear fitting method, with
S = n−1X(n−1XTX + λI)−1XT ; thus,

df(λ) = tr(n−1X(n−1XTX + λI)−1XT ) =
p∑
j=1

dj
dj + λ

where d1, . . . , dp are the eigenvalues of n−1XTX

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 8 / 28



Selection of λ
Case study: Pollution study

General principles
Model selection criteria

Remarks

• This result illustrates that in penalized regression, model
selection is continuous
• As we change λ, we gradually increase the complexity of the
model, and small changes in λ result in small changes in
estimation
• This is in sharp contrast to “best subsets” model selection,
where complexity is added by discrete jumps as we introduce
parameters, and adding just a single parameter can introduce
large changes in model estimates
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The Cp statistic

• Now that we’ve generalized the concept of degrees of
freedom, I’ll describe various model selection criteria that can
be used to select λ
• This account will be brief, since you have likely encountered
these criteria in other classes
• To begin, let us turn our attention back to E(PE); recall that

it consisted of two terms, a within-sample error term and a
model complexity term
• Using RSS/σ2 for the first term and df(λ) for the second, we
obtain a criterion known as the Cp statistic:

Cp = RSS(λ)
σ2 + 2df(λ)
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Leave-one-out error

• An alternative approach is to consider leaving observations
out of the fitting process and saving them to use for
evaluating predictive accuracy; in general, this is known as
cross-validation, which we will discuss later
• However, for linear fitting methods, there is an elegant
closed-form solution to the leave-one-out cross-validation error
that does not require actually refitting the model
• Letting f̂(−i) denote the fitted model with observation i left
out,

∑
i

{
yi − f̂(−i)(xi)

}2
=
∑
i

(
yi − f̂(xi)

1− Sii

)2

,

where Sii is the ith diagonal element of S
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GCV

• Replacing Sii by its average, tr(S)/n = df(λ)/n, we arrive at
the generalized cross validation criterion:

GCV = RSS(λ)
(1− df(λ)/n)2

• Like Cp, the GCV criterion combines RSS(λ) with a model
complexity term, although in GCV it takes the form of an
inflation factor (1− df/n)2 multiplicative factor rather than
an additive term
• One attractive aspect of GCV as opposed to Cp statistic is

that it does not require an estimate of σ2
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AIC

• Both Cp and GCV are developed with the least squares
objective in mind; the Akaike information criterion (AIC) is a
generalization of the Cp idea to general maximum likelihood
models
• Rather than consider the expected value of {ynew

i − f̂i(θ̂)}2,
Akaike proposed estimating the expected value of
logP(ynew

i |θ̂), where θ̂ denotes the estimated parameters of
the model based on the original data {yi}ni=1
• Asymptotically, it can be shown that for maximum likelihood
estimation,

AIC = 2L(θ̂(λ)|X,y) + 2df(λ)
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AIC (cont’d)

• For the normal distribution,

AIC = n log σ2 + RSS(λ)
σ2 + 2df(λ) + constant

• Thus, in the case of normally distributed errors with known
variance σ2, AIC and Cp are equivalent up to a constant
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Bayesian model selection

• A rather different approach is to consider model selection
from a Bayesian perspective
• Letting Mλ denote the model with regularization parameter λ,

we would be interested in calculating the posterior probability
of Mλ given the data, P(Mλ|X,y)
• If we assume a uniform prior across all models, then
P(Mλ|X,y) ∝ P(y|X,Mλ)
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BIC

• In general, calculating this quantity involves numerical
integration, but this integral can be approximated to yield

logP(y|X,Mλ) ≈ −L(θ̂(λ)|X,y)− 1
2df(λ) log(n)

• The Bayesian information criterion (BIC) is defined as −2
times this quantity:

BIC = 2L(θ̂(λ)|X,y) + df(λ) log(n)

• Thus, choosing the model with the smallest BIC is
(approximately) equivalent to choosing the model with the
highest posterior probability
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Remarks

• Note that, despite the very different derivations, the equations
for AIC and BIC are surprisingly similar; the only difference is
log(n) instead of 2 as the multiplicative factor for df(λ)
• In practice, this means that BIC applies a heavier penalty to
model complexity than does AIC (provided n ≥ 8) and will
therefore favor more parsimonious models
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Data management in the hdrm package

• Due to the number of large data sets associated with the
book and this course, I decided not to include the data sets in
the R package directly
• Instead, after installing the package, you call downloadData
to install the data sets (only needs to be done once):
downloadData() # Download all data sets
downloadData(bcTCGA) # Download a specific data set

• Once the data sets are downloaded, you have two options for
loading them:
Data <- readData(bcTCGA) # Call Data$X, Data$y, etc.
attachData(bcTCGA) # Call X, y, etc.
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Ridge regression in hdrm

• I have provided a tool for ridge regression in the hdrm pacakge
(other packages have such functions as well)
• The main function in ridge, which can be used in one of two
ways:
ridge(y ~ x1 + x2:x3, data) # as in lm()
ridge(X, y) # as in glmnet()

• Once this has been done, the package offers a variety of
functions for interacting with the object:
plot(fit)
coef(fit)
predict(fit)
summary(fit)
confint(fit)
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Pollution study

• To illustrate ridge regression in practice, we will now consider
a study designed to estimate the relationship between
pollution and mortality while adjusting for the potentially
confounding effects of climate and socioeconomic conditions
• To quantify pollution, “relative pollution potential” was
measured for three pollutants – hydrocarbons (HC), nitrogen
oxides (NOX), and sulfur dioxide (SO2) – in 60 Standard
Metropolitan Statistical Areas in the United States between
1959-1961
• The outcome of interest is total age-adjusted mortality from
all causes, in deaths per 100,000 population
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Pollution study (cont’d)

• In total, there are p = 15 explanatory variables: the three
pollution variables, 8 demographic/socioeconomic variables,
and 4 climate variables
• Although few would consider p = 15 “high-dimensional”, the

full maximum likelihood model nevertheless struggles with a
sample size of just 60 and strong correlation among several
variables
• As we will see, this leaves it unable to provide a trustworthy
answer to the primary question of the relationship between
pollution and mortality
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Ridge trace / coefficient path
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Remarks

• It is particularly instructive to look at the coefficient paths of
the three pollution parameters, all of which are fairly highly
correlated with each other
• At small λ values, the estimates indicate that NOX pollution
has a very strong harmful effect, while HC pollution has a very
strong protective effect
• This result is surprising, and indeed rather difficult to believe
– increasing the amount of HC pollution should save 60 lives
per 100,000?
• However, as we increase the ridge penalty, we see that the
estimated effects for these two types of pollution quite rapidly
drop to near zero
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Remarks (cont’d)

• A parallel story is told by examining the SO2 coefficient path
• SO2 is correlated with HC and NOX (although not as highly

correlated as HC and NOX are with each other), so its
solution is affected by the estimated effects for the other two
pollutants
• In particular, while most of the other coefficient estimates
increase monotonically as λ decreases from ∞ to 0, the
estimated effect of SO2 goes up, then decreases
• As a result, depending on the value of λ one chooses, SO2

pollution is either far more important, or far less important,
than HC and NOX pollution
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Fitting error and prediction error
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t-statistics for OLS and ridge

Pollution terms:

t.ridge t.ols

SO2 2.72 0.58
NOX 0.37 1.33
HC -0.42 -1.37

t.ridge t.ols

NonWhite 3.90 3.36
Precip 2.47 2.06
Density 1.41 0.91
Humidity 0.32 0.09
Poor 0.21 -0.05

WhiteCol -0.38 -0.12
House -0.52 -1.53
Over65 -0.61 -1.07
Sound -0.86 -0.37
Educ -1.03 -1.44

JulyTemp -1.11 -1.63
JanTemp -1.77 -1.75
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Remarks

• For the t-statistics on the previous page, I took the standard
error to be the square root of the diagonal elements of

∇2
βQ

−1 = σ2

n
(n−1XTX + λI)−1,

using σ̂2 = RSS/(n− df) to estimate σ2; this is not the only
possibility
• Note that some terms become more significant with an added
ridge penalty, while others become less significant; although
the estimates are shrunken towards zero, the fact that
variance is reduced can cause the significance (i.e., the
evidence against β = 0) to increase
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Concluding remarks

• The major limitation of ridge regression is the fact that all of
its coefficients are nonzero
• This poses two considerable problems for high-dimensional
regression:
◦ Solutions become very difficult to interpret
◦ The computational burden becomes large

• It is desirable, then, to have models which allow for both
shrinkage and selection; in other words, to retain the benefits
of ridge regression while at the same time selecting a subset
of important variables
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