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Introduction

• In this lecture, we will take a step back from how to assess
significance in large-scale testing, and discuss an important
consideration in performing the tests themselves
• Specifically, the collection of data concerning a large number
of similar hypotheses allows for the possibility of borrowing
information across tests
• This is the concept behind hierarchical modeling
• Certainly, the use of hierarchical models is not restricted to
high-dimensional data, although as we will see, the concept
comes up often in this setting
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Basic question

• To illustrate the concepts, we will work with a different data
set today, from microbiologists at the University of Iowa
• In a liquid, certain bacteria (V. parahaemolyticus) swim

around seeking nutrients with the aid of a polar flagellum
• On a surface, however, the same bacteria will reorganize their
cellular structure on a massive scale, growing large numbers of
lateral flagella and allowing the bacteria to swarm over the
surface
• The basic question of interest here is: how exactly do these
bacteria initiate this “swarming” response?
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Isolating surface sensing genes

• A simple way to address the question would be to compare
“swimmers”, growing in liquid, versus “swarmers”, growing on
a plate
• However, there are many changes between a liquid
environment and a surface environment, and many of the
differences between the cell types will have nothing to do with
the swarming transformation specifically
• The novel innovation at work here is that the researchers
discovered how to force the bacteria into swimmer and
swarmer states – i.e., to grow swarmer cells in a liquid and
swimmer cells on a plate
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Isolating surface sensing genes (cont’d)

• Their study thus consisted of measuring gene expression under
four experimental conditions: swimmer cells grown on a plate,
swimmer cells grown in a liquid, swarmer cells grown on a
plate, and swarmer cells grown in a liquid
• The goal is to find genes that are specifically turned on (or
off) in response to a swarmer cell growing on a plate – not
just growing on a plate or just the swarmer cell type, but
when the two are combined
• From a statistical point of view, this is a two-way ANOVA and
we are interesting in testing for an interaction between
environment and cell type
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Example

Here is an example of the kind of gene we’re interested in, a
flagellar-specific initiation factor called LafS:

Plate Liquid
Swarmer1 11.29 2.41
Swarmer2 11.43 2.37
Swimmer1 2.36 2.40
Swimmer2 2.36 2.34

Of course, most differentially expressed genes are not nearly as
obvious as this one
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Replications and expense

• As you can see from the previous slide, there are only two
replicates per experimental condition
• Obviously, it would be nice to have more, but it tends to be
expensive to measure the expression of thousands of genes;
this often hinders the effort to collect larger sample sizes
• The main consequence we are interested in today is the fact
that we have relatively few degrees of freedom with which to
estimate the variance for any particular gene
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Example: Outlying variance

• For example, consider gene ModA:
Plate Liquid

Swarmer1 5.61 5.97
Swarmer2 5.61 5.93
Swimmer1 5.60 6.16
Swimmer2 5.60 6.19

• This gene doesn’t look particularly important, and yet the test
for an interaction is highly significant: p = 0.0004
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Remarks

• The primary factor driving this highly significant result is the
fact that this gene has an extremely small sample variance
• As we have just mentioned, however, this sample variance is
based on a mere four degrees of freedom, raising the question:
is the true variance of this gene really that small, or is this
just a coincidence?
• In particular, this gene has a much smaller variance than the
vast majority of genes
• Perhaps, then, it would make sense to borrow information
regarding the variance from the other genes for which we have
data
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Notation

• Let j index the features (here, genes), X denote the design
matrix (here, an 8× 4 matrix), and yj denote the
measurements for the jth feature
• Suppose we are interested in estimating θj = λ>βj
• We then have

V(θ̂) = λ>(X>X)−1λσ2
j

= vσ2
j ,

where v = λ>(X>X)−1λ, θ̂j = λ>β̂j , and β̂j is the usual
least squares estimator
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Distributional results

Under the usual distributional assumptions that yji is normally
distributed with mean x>

i β and variance σ2
j , we have the following

classical results:

θ̂|θj , σ2
j ∼ N(θj , vσ2

j )

σ̂2
j |σ2

j ∼
σ2
j

d
χ2
d

σ̂2
j q θ̂j |θj , σ2

j ,

where d denotes the residual degrees of freedom; here,
d = n− p = 4
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t-tests

The distributional results on the previous slide provide us with the
following result for estimation and testing of coefficients and linear
combinations or contrasts for linear models:

θ̂j
σ̂j
√
v
∼ td,

where td denotes a random variable following a t distribution with
d degrees of freedom
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Conjugate prior for σ2

• To stabilize the estimate of variance and borrow information
across genes, we will assume a prior distribution for σ2

j ; this
allows the variance of each gene to differ, but assumes some
degree of similarity across genes
• For many reasons, it is advantageous here to work with the
following conjugate prior:

1
σ2
j

∼ Gamma
(
d0
2 ,

d0σ
2
0

2

)

• Result:

1
σ2
j

∣∣∣σ̂2
j ∼ Gamma

(
d0 + d

2 ,
d0σ

2
0 + dσ̂2

j

2

)
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Alternate form for prior

• Homework:

cX ∼ χ2
ν =⇒ X ∼ Gamma

(
ν

2 ,
c

2

)

• This offers the somewhat cleaner way of writing our model:

Prior: 1
σ2
j

∼ 1
d0σ2

0
χ2
d0

Posterior: 1
σ2
j

∣∣∣σ̂2
j ∼

1
d0σ2

0 + dσ̂2
j

χ2
d0+d

• Intuitively, we start with a prior d0 observations of σ2
j centered

on σ2
0, then collect d additional observations centered on σ̂2

j
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Shrinkage estimator for σj

• From the result on the previous slide, it is easy to see that the
posterior mean for 1/σ2

j is

E(1/σ2
j |σ̂2

j ) = d0 + d

d0σ2
0 + dσ̂2

j

• This implies the estimator

σ̃2
j =

d0σ
2
0 + dσ̂2

j

d0 + d

• This estimate is a weighted average of the prior and sample
means, with d0 and d providing the weights
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Moderated t-statistic

• This, in turn, implies the following test, a modified version of
the classical t-test:

θ̂j
σ̃j
√
vj
∼ td0+d

• Note that there are two changes here:
◦ The variance has been shrunken towards a common variance σ2

0
◦ The degrees of freedom have increased from d to d+ d0
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Estimation of hyperparameters

• One thing remains: we don’t know σ0 or d0

• In Bayesian terminology, σ0 and d0 are called hyperparameters
(parameters that govern the distribution of other parameters)
• A fully Bayesian approach would, of course, specify priors for
σ0 and d0

• We will take an empirical Bayes approach today, calculating
estimates for σ0 and d0 and plugging them where they are
needed to perform the moderated t-test
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Method of moments estimator

• A relatively simple estimator can be obtained using a method
of moments approach on the log scale:

zj = log σ̂2
j

• The distribution of zj is roughly normal with known (albeit
slightly complicated) expressions for the mean and variance
• We’ll skip the details, but the main idea is that

◦ The mean of the zj values allows us to estimate log(σ2
0)

◦ The variance of the zj values allows us to estimate d0, with
larger variance implying smaller d0 and vice versa
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• The empirical Bayes approach we have laid out here is
implemented in an R package called limma
• There are three main functions of interest to us:

◦ lmFit: Fits the OLS models; here, the rows of Y represent
features, and X is the design matrix

fit <- lmFit(Y, X)

◦ eBayes: Does all the shrinkage estimation and moderated
t-tests

eb <- eBayes(fit)

◦ topTable: Provides a summary

Tab <- topTable(eb)
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• The method of moments approach described earlier results in
an estimate of σ0 = 0.18 for the prior standard deviation and
d0 = 1.00 for the prior degrees of freedom
• In other words, most genes have standard deviations of
roughly 0.18, but there are enough differences among genes in
terms of their variability that our estimate should give 80% of
its weight to the observed variance and only 20% to the prior,
or common, variance
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• Revisiting ModA, our extremely low-variance gene from
earlier, its sample standard deviation was 0.015
• Shrinking back towards the common variance by 20% results
in a posterior standard deviation of 0.08 (still well under half
the common standard deviation)
• Conventional t-test: t = −10.99, p = 0.0004, q = 0.05
• Moderated t-test: t = −2.05, p = 0.095, q = 0.89
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• The typical result, however, is that test results become more
powerful, because we have additional degrees of freedom with
which to estimate the residual variance
• For example, consider the following gene, another flagellar
biosynthetic protein:

Plate Liquid
Swarmer1 7.12 2.90
Swarmer2 8.52 2.90
Swimmer1 2.93 2.90
Swimmer2 2.92 2.44
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• The raw data seems fairly convincing, and yet the standard
OLS test is not powerful enough to detect the interaction at a
FDR of 10%: t = −6.33, p = 0.003, q = 0.22
• The gene is discovered, however, by the moderated t-test:
t = −6.98, p = 0.0009, q = 0.07
• Overall, 43 genes can be identified at an FDR cutoff of 10%
using the conventional test, compared to 72 genes for the
empirical Bayes test

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 24 / 28



Introduction
Hierarchical modeling of variance parameters

Results

Local FDR (using ashr)

z

D
en

si
ty

−6 −4 −2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

89 genes “turned on”
(posterior mean > 4-fold)
and only 5 genes “turned
off”

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 25 / 28



Introduction
Hierarchical modeling of variance parameters

Results

Comments on lfdr

• Interestingly, local FDR estimates π̂0 = 0.44, despite the fact
that only 217 genes (out of 5138) can be identified as
differentially expressed (lfsr < 10%)
• In general, this indicates something worth noting about power
in high-dimensional testing: this experiment was certainly
sufficiently powered to detect a number of interesting genes,
but clearly not powered to detect all (or even a majority) of
differentially expressed genes
• It is also worth noting that θ̂j ∼ N(θj , s2

j ) probably does not
hold in the case of moderated t-tests; the innovations in
limma and ashr have not yet been combined
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• Prior to limma, a variety of ad hoc procedures were used to
try to stabilize variance estimates, along with manually
filtering out results that seemed like strange artifacts of
unstable variance estimation
• The beauty of the empirical Bayes approach is that it provides
a systematic, coherent, logical way of accomplishing all this
with a minimal computational burden, since in the end, we’re
still performing t-tests
• Another option, of course, would be a fully Bayesian
approach, although this tends to be fairly inconvenient in high
dimensions, as MCMC procedures take a long time to run and
lots of memory to store, and tends to give similar results
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• Increasingly, many high-throughput molecular biology
experiments use sequencing to measure things like gene
expression, rather than microarrays
• From a statistical perspective, this means that y is now count

data, and something like the Poisson or negative binomial
distribution is more appropriate than the normal distributions
we covered today
• All of the concepts we have talked about today still apply,
though the details are more complicated – for this type of
data, it is the estimation of gene-specific overdispersion
parameters that is unstable and which requires borrowing
information across genes
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