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Introduction

• We concluded the previous lecture with a look at how false
discovery rates can be viewed as either a frequentist
methodology or an empirical Bayes estimate
• From a Bayesian standpoint, however, the false discovery rate
is somewhat strange, in the sense that it involves conditioning
on a rejection region zj ∈ Z
• A more natural thing to do, as least from a Bayesian
perspective, is to condition on the actual value of z; in other
words, to estimate

fdr(z0) = P(H0|Z = z0);

the local false discovery rate for H0j is therefore fdr(zj)
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FDR applies to the group, not a specific test

• One reason that the FDR is somewhat unsatisfying is that, by
conditioning on zj ∈ Z, we calculate a probability/rate
applying generally to all hypotheses in that region
• This, however, ignores the fact that some z-values are much
more extreme than others, or to put it another way, that not
all hypotheses are equally likely to be contributing the false
discoveries
• For example, at an FDR of 1%, we can claim 734 discoveries;
among them, |zj | ranges from 3.3 to 9.5
• FDR tells us to expect ≈ 7 false discoveries; those false
discoveries are presumably much more likely to be coming
from the tests with z ≈ 3 than z ≈ 9
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The tale of the dishonest statistician

• To see why this might be a problem, let’s take this line of
reasoning to an extreme end: suppose we test h = 1, 000
hypotheses, and the smallest p-value we get is p = 0.001
• If we want to control the FDR at 10%, this is well above the
BH cutoff to reject the first gene (here, 0.0001)
• Suppose that the statistician, disappointed by the fact that we
cannot reject any hypotheses, decides to add 10 additional
tests for which they know in advance that the null hypothesis
is false
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The tale of the dishonest statistician (cont’d)

• As expected, the results for those 10 tests are highly
significant
• Now, they go back to control the FDR for these 1,010 tests;
the p-value cutoff for the 11th test is now p = 0.0011, so now
we can reject the hypothesis that we couldn’t on the previous
slide
• This approach allows the statistician to publish a list of 11
“discoveries”, of which 10 were known in advance, but hey,
there’s one interesting new discovery that we have
“significant” statistical evidence for
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Exchangeability

• This obviously flawed approach illustrates that false discovery
rates come with a key assumption of exchangeability: if we’re
going to make significance statements about a group of tests,
those tests should be as homogeneous as possible
• It isn’t incorrect to say that the false discovery rate for those
11 discoveries is under 10%, but it’s certainly misleading – it’s
pretty obvious which result is likely to be the false discovery
• This example is (hopefully) unrealistic, but the question of
which hypotheses can be combined to form a relevant group
arises quite often: for example, should we be combining the
left and right tails?
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Bayes rule again

• Following the same reasoning as at the end of the previous
lecture, we can use Bayes rule to obtain an expression for the
local false discovery rate:

fdr(z) = π0f0(z)
f(z) ,

where f(z) = π0f0(z) + π1f1(z) is the marginal density of
z-values and f0(z) is the null density
• Note: Many authors (including me) use Fdr to refer to the
false discovery rate and fdr to refer to the local FDR,
reflecting the F/f convention for denoting distribution and
density functions, respectively
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Remarks

• Local FDRs offer a number of advantages over tail-area FDRs;
for example, from a Bayesian perspective, conditioning on z is
correct, not z ∈ Z; in fact, the quantity f1(z)/f0(z) is known
as the Bayes factor for quantifying the level of empirical
support for hypothesis 1 over hypothesis 0
• However, local FDR has faced two main challenges in terms of
gaining widespread acceptance relative to tail-area FDR:
◦ No interpretation as a frequentist error rate control procedure

is available
◦ Estimating a density (f) is far less straightforward than

estimating a distribution (F ), meaning that there are many
variants of local FDR, unlike tail area FDR

• This may be changing (I’ve started to see local FDRs in
prominent journals more often), but time will tell
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Three ingredients

• The local false discovery rate has three components:
◦ π0
◦ f
◦ f0

• Each of these can potentially be varied, producing different
estimates of fdr
• Today, we will look at some relatively simple approaches for
estimating these quantities, then look at one complex
approach, although many alternatives exist
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Density estimation using Gaussian kernels

One common approach is kernel density estimation:
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Choice of bandwidth
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Local fdr for leukemia data: Illustration
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Local fdr for leukemia data: π̂0 = 0.53
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Using π̂0 = 0.53,
our estimate from
the previous lecture,
we seem to obtain
more realistic
estimations of the
null and alternative
distributions
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z vs local FDR
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For a 10% local FDR
cutoff:
• Using π̂0 = 1, critical
value of z = 2.95;
986 significant results
• Using π̂0 = 0.53,
critical value of
z = 2.63; 1,266
significant results

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 14 / 27



Introduction
Local false discovery rates

Mixture modeling

Definition
Variants
FDR vs. local FDR

Estimating a null distribution?

• Lastly, one could consider estimating f0 as well
• This is admittedly a somewhat weird idea – using the data to
estimate the null – however, it has been proposed in the
literature and studied by many authors
• The basic idea is to assume that Z ∼ N(δ0, σ

2
0) and use the

“central” part of the data to estimate δ0 and σ0

• It is certainly possible, for a variety of reasons, for the
theoretical null N(0, 1) not to hold; whether we can fix these
problems by estimating a null is not always clear
• It’s an interesting idea, but I’m not going to say much more
about it in this lecture
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Cutoff comparison

• It is worth spending a few slides on a deeper examination of
Fdr versus fdr in terms of results and interpretation
• Using π0 = 1, and a 10% cutoff,

◦ Fdr: Critical z = 2.27; 1,635 significant findings
◦ fdr: Critical z = 2.95; 986 significant findings

• For any given percentage cutoff, local FDR is considerably
more conservative than FDR about declaring a result
significant
• To put it another way, a 10% Fdr does not mean the same

thing as a 10% fdr
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Conditional expectation relationship

• Further insight into the relationship between FDR and local
FDR is given by this result:

E{fdr(z)|z ∈ Z} = Fdr(Z)

• Roughly, then, we should expect the average local FDR
among the significant features to equal the FDR:
◦ Left tail: Average fdr for features with Fdr < 0.1 is 0.102
◦ Right tail: Average fdr for features with Fdr < 0.1 is 0.097

• This relationship does not exactly work out for two-sided tests
unless we specifically estimate a combined tail density f(|z|)
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R code

• There are a number of R packages for calculating local FDRs,
all of which take different approaches to the estimation of π0,
f , and potentially f0

• I will discuss one package in some detail today called ashr:
“False discovery rates: a new deal”, by Stephens (2017),
Biostatistics
• Other popular packages include locfdr and fdrtool
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Gaussian mixture model

• Let {θj} denote the effects of interest, with corresponding
standard errors {sj}
• Consider the following empirical Bayes mixture model:

θ̂j |θj , sj
⊥⊥∼ N(θj , s

2
j )

θj
⊥⊥∼ π0δ0(·) +

K∑
k=1

πkN(0, σ2
k),

where δ(·) denotes a point mass at zero
• By Bayes’ rule,

f(θj |θ̂j) ∝ f(θj)f(θ̂j |θj)
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Remarks

• What makes this an “empirical” Bayes model is that we will
be estimating {πk, σk} from the data, rather than specifying
priors on them and fitting a fully Bayesian model
• This could be done a variety of ways, for example using the
EM algorithm, although we will skip the details
• One key difference from the earlier approach is that here, f1 is

unimodal by construction; recall that it was bimodal with
peaks around ±2 earlier
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ashr: Leukemia data
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π0

• According to the mixture model, even the z values near 0 are
likely to be non-null; π̂0 = 0.19
• This varies somewhat depending on what mixture you assume,
but is always much lower than the Storey approach for this
data set:
◦ Uniform: π̂0 = 0.25
◦ Half-uniform: π̂0 = 0.22
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False sign rate

• One advantage of this approach is that we obtain a posterior,
and can carry out some interesting calculations unavailable to
us in the frequentist framework
• Of particular interest is the idea of a local false sign rate:

fsr = P(θ ≤ 0|θ̂ > 0);

the definition for θ̂ < 0 is similar
• John Tukey: “The effects of A and B are always different – in
some decimal place – for any A and B. Thus asking ’Are the
effects different?’ is foolish . . . the more meaningful question
[is]: ’is the evidence strong enough to support a belief that
the observed difference has the correct sign?’“
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Example: False sign rate

• This is straightforward to calculate with the mixture model,
since the posterior has a simple, closed form
• To illustrate, let’s consider the gene TERF1

◦ z = 0.2
◦ p = 0.84
◦ Fdr = 0.49(π̂0 = 0.53)
◦ fdr = 0.92(kernel, π̂0 = 0.53)
◦ fdr = 0.25(ashr)
◦ fsr = 0.59(ashr)
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Prioritizing discoveries

• When the number of discoveries is large, one typically wishes
to prioritize the most promising or significant findings
• Prioritizing based on p-value/Fdr/fdr/fsr is sometimes
unsatisfactory, as a feature can be highly significant without a
large effect size if the variance is small
• However, prioritizing on the basis of mean difference/fold
change is often worse, as it gives too much emphasis to noisy
features with inconsistent effects
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Posterior means: Leukemia data

• Again, with a posterior distribution, there is another attractive
option available to us: the posterior mean
• The posterior mean reflects the effect size, but is shrunken
towards zero by the prior; how much shrinkage depends on the
feature’s noise level (sj):
Gene θ̂ s fsr fdr PM

MCL1 1.26 0.28 0.0007 0.0005 1.03
PTX3 1.11 0.17 0.0000 0.0000 1.03
CSF1R 1.32 0.32 0.0034 0.0022 1.03
FAH 1.08 0.13 0.0000 0.0000 1.02
M63438_s_at 2.22 0.68 0.1058 0.0537 1.02
PLCB2 1.11 0.17 0.0000 0.0000 1.02

PM: Posterior mean
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ashr: Usage

• Basic usage of the ashr package:
fit <- ash(theta, se)

the mixcompdist option changes the type of mixture
distribution (normal/uniform/etc)
• Main results are included in fit$result, but some other

functions of interest:
◦ get_pm(fit): Posterior means
◦ get_lfdr(fit): Local false discovery rate
◦ get_lfsr(fit): Local false sign rate
◦ get_pi0(fit): π̂0
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